2080
G. Manolikakes et al.
LETTER
(4) (a) Weidmann, B.; Widler, L.; Olivero, A.; Maycock, C.;
Met
Br
Ni(acac)2 (0.5 mol%)
Seebach, D. Helv. Chim. Acta 1981, 64, 357. (b) Reetz, M.
Top. Curr. Chem. 1982, 106, 1.
ligand 5 (1.0 mol%)
+
X
(5) (a) Tsuji, T.; Ishii, T. J. Organomet. Chem. 1992, 425, 41.
(b) Fleming, S.; Kabara, K.; Nickisch, K.; Neh, H.;
Westermann, J. Tetrahedron Lett. 1994, 35, 6075. (c) Arai,
M.; Lipshutz, B.; Nakamura, E. Tetrahedron 1992, 48,
5709. (d) Bumagin, N.; Ponomaryov, A.; Beletskaya, I. J.
Organomet. Chem. 1985, 291, 129. (e) Han, J.; Tokunaga,
N.; Hayashi, T. Synlett 2002, 871. (f) Obora, Y.; Moriya,
H.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2003, 2820.
(6) (a) Arduengo, A.; Krafczyk, R.; Schmutzler, R.; Craig, H.;
Goerlich, J.; Marshall, W.; Unverzagt, M. Tetrahedron
1999, 55, 14523. (b) Scott, N.; Nolan, S. Eur. J. Inorg.
Chem. 2005, 1815. (c) Marion, N.; Navarro, O.; Mei, J.;
Stevens, E.; Scott, N.; Nolan, S. J. Am. Chem. Soc. 2006,
128, 4101. (d) Organ, M.; Avola, S.; Dubovyk, I.; Hadei, N.;
Kantchev, E.; O’Brien, C.; Valente, C. Chem. Eur. J. 2006,
12, 4749. (e) The NHC ligand itself is generated by
deprotonation with the organometallic reagent. See also
references above.
THF
25 °C
X
2k: X = NMe2
2l: X = OMe
3o: X = NMe2; 92% after 16 ha
3p: X = OMe; 83% after 1 ha
1a: Met = Ti(OEt)3
3o: X = NMe2; 14% after 24 hb
with ligand 4 <5% after 24 hb
3p: X = OMe; 17% after 24 hb
6: Met = ZnBrc
Scheme 2 Comparison of aryltitanium and -zinc reagents. a Yield
of analytically pure product. b Yield determined by GC analysis with
n-tetradecane as an internal standard. c Solvent: THF–NMP (8:1).
In summary, we have developed an efficient Ni-catalyzed
cross-coupling reaction of aryltitanium reagents with aryl
chlorides and bromides. The reaction scope is broad and
most of the cross-couplings proceed at room temperature
or even at lower temperatures.
(7) Wada, M.; Higashizaki, S. Chem. Commun. 1984, 482.
(8) Polar solvents such as NMP, NEP (N-ethyl-2-pyrroli-
dinone), DMPU or DME were not effective as co-solvents,
as it is known in other cross-coupling reactions. See also:
Gavryushin, A.; Kofink, C.; Manolikakes, G.; Knochel, P.
Org. Lett. 2005, 7, 4871.
Acknowledgment
(9) Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43,
3333.
(10) Yunusov, S.; Sidakin, G. Zh. Obshch. Khim. 1955, 25, 2009.
(11) Brittain, J.; Jones, R.; Arques, J.; Saliente, T. Synth.
Commun. 1982, 12, 231.
We thank the Fonds der Chemischen Industrie and the DFG for
financial support and Saltigo (Leverkusen), Degussa (Hanau),
Chemetall (Frankfurt) and BASF (Ludwigshafen) for the generous
gift of chemicals.
(12) Nguyen, T.; Negishi, E. Tetrahedron Lett. 1991, 32, 5903.
(13) (a) Negishi, E.; Valente, L.; Kobayashi, M. J. Am. Chem.
Soc. 1980, 102, 3298. (b) Negishi, E. Acc. Chem. Res. 1982,
15, 340. (c) Zeng, X.; Quian, M.; Hu, Q.; Negishi, E. Angew.
Chem. Int. Ed. 2004, 43, 2259. (d) Quian, M.; Huang, Z.;
Negishi, E. Org. Lett. 2004, 6, 1531.
References and Notes
(1) (a) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de
Meijere, A.; Diederich, F., Eds.; Wiley-VCH: Weinheim,
2004. (b) Tsuji, J. Transition Metal Reagents and Catalysts:
Innovations in Organic Synthesis; Wiley: Chichester, 1995.
(c) Cross-Coupling Reactions: A Practical Guide, In Top.
Curr. Chem., Vol. 219; Miyaura, N., Ed.; Springer-Verlag:
Berlin-Heidelberg, 2002.
(2) (a) Duthaler, R.; Hafner, A. In Transition Metals for Organic
Synthesis; Beller, M.; Bolm, C., Eds.; Wiley-VCH:
Weinheim, 1998, 447. (b) Reetz, M. Organotitanium
Reagents in Organic Synthesis; Springer Verlag: Berlin,
1986. (c) Weidmann, B.; Seebach, D. Helv. Chim. Acta
1980, 63, 2451.
(14) Not using NMP leads to heterogeneous reactions and lower
yields.
(15) Typical Procedure for the Cross-Coupling Reaction;
Preparation of Biphenyl-4-carboxylic Acid Ethyl Ester
(3a): A flame-dried flask equipped with a magnetic stirring
bar, an argon inlet, and a septum was charged with a
Ti(OEt)4 solution (1.0 mL, 1.5 M in THF). First phenyl-
magnesium chloride (0.84 mL, 1.79 M in THF) was added
dropwise at 0 °C, then Ni(acac)2 (1.3 mg, 0.005 mmol),
ligand 4 (2.1 mg, 0.005 mmol) and 4-bromobenzoic acid
ethyl ester (2a; 229 mg, 1.00 mmol) were added. The
reaction mixture was stirred for 3 h at r.t. Then the mixture
was quenched with a sat. NH4Cl solution and extracted with
Et2O. Column chromatography (pentane–Et2O, 9:1) of the
crude residue yielded 3a as colorless solid (215 mg, 95%).
(3) (a) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100,
2835. (b) Sato, F.; Urabe, H. In Titanium and Zirconium in
Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim,
2002, 319. (c) Kulinkovich, O.; de Meijere, A. Chem. Rev.
2002, 100, 2789.
Synlett 2007, No. 13, 2077–2080 © Thieme Stuttgart · New York