5
98
Vol. 61, No. 5
1
1
Table 5. H-NMR Spectral Data for Aglycone Moiety of 4 and 5 (in Table 6. H-NMR Spectral Data for Sugar Moiety of 4 and 5 (in Pyri-
Pyridine-d , 500MHz)
dine-d , 500MHz)
5
5
4
5
4
5
a)
1
1
2
2
3
5
6
6
7
7
1a
1b
2a
2b
5a
5b
6a
6b
8
9
0
1
2a
2b
3
5a
5b
6
a
b
a
b
1.70
1.71 ddd (4.5, 4.5, 13.0)
1.24 m
Glc-1
5.05 d (8.0)
5.06 d (8.0)
1.22 m
2
3
4
5
4.02 dd (8.0, 9.0)
4.22 dd (9.0, 9.0)
4.26 dd (9.0, 9.0)
4.02 dd (8.0, 9.0)
4.22 dd (9.0, 9.0)
4.26 dd (9.0, 9.0)
2.30 dddd (4.5, 4.5, 4.5, 13.5)
2.32 dddd (4.5, 4.5, 4.5, 14.5)
a)
a)
2.03
2.04
a)
a)
3.70 dd (4.5, 11.5)
1.31 brd (12.5)
1.82 brdd (6.0, 13.5)
1.51 m
3.72 dd (4.5, 11.5)
1.33 dd (1.0, 11.5)
1.83 brdd (6.0, 13.5)
4.15
4.15
6a
6b
Ara-1
4.64 dd (3.0, 12.5)
4.65 dd (2.5, 10.5)
a)
a)
a
b
a
b
4.30
4.30
a)
1.50
5.12 d (5.5)
5.13 d (5.5)
a)
2.05
1.99
2.18
1.96
2.10 m
2
3
4
5a
5b
4.59 dd (5.5, 7.5)
4.36 dd (3.0, 7.5)
4.40 ddd (3.0, 3.0, 4.5)
4.59 dd (5.5, 7.5)
4.37 dd (2.5, 7.5)
4.40 ddd (2.5, 2.5, 4.5)
a)
a)
2.04
a)
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
3
2.19 ddd (1.0, 8.5, 16.5)
a)
a)
a)
a)
1.98
2.38
4.32
4.31
a)
2.42 ddd (9.0, 9.0, 13.0)
1.44 dd (9.0, 13.0)
3.76 dd (2.5, 12.5)
5.11 d (8.0)
3.76 dd (2.5, 12.0)
5.11 d (8.0)
1.44 dd (9.5, 11.5)
1.76 m
Glc′-1
a)
1.68
2
3
4
5
6a
6b
4.03 dd (8.0, 9.0)
4.13 dd (9.0, 9.0)
4.18 dd (9.0, 9.0)
3.81 ddd (2.5, 5.0, 9.0)
4.48 dd (2.5, 11.5)
4.04 dd (8.0, 9.0)
4.13 dd (9.0, 9.0)
4.18 dd (9.0, 9.0)
3.81 ddd (2.5, 4.5, 9.0)
4.49 dd (2.5, 11.5)
a)
1.39 dd (10.0, 10.0)
1.51
a)
2.17
1.64
2.62 m
a)
a)
2.01
0.91 s
0.95 s
0.91 s
0.96 s
2.41 q (7.0)
1.09 d (7.0)
5.43 d (5.5)
a)
a)
4.32
4.32
a)
2.05
δ in ppm from TMS (coupling constants (J) in Hz are given in parentheses). Glc,
glucopyranosyl; Ara, arabinopyranosyl. a) Signals were overlapped with other signals.
1.02 d (7.0)
a)
2.00
1.78 dd (7.5, 12.0)
4.62 dd (7.5, 10.5)
FAB-MS.
4.96 d (5.5)
a)
a)
2.57
2.53
2.57
2.56
References
a)
a)
1) “Chuyaku Daijiten,” ed. by Koso Shin Igakuin, Shanghai Kagaku
Gijutsu Shuppansha, 1978, p. 2270.
1.07 dd (7.0, 7.0)
1.58 s
4.46 d (11.0)
3.66 brd (11.0)
1.53 s
1.10 dd (7.0, 7.0)
1.60 s
4.47 d (11.5)
3.67 brd (11.5)
1.59 s
8
2) Kouno I., Komori T., Kawasaki T., Tetrahedron Lett., 14, 4569–
4572 (1973).
3) Kouno I., Noda N., Ida I., Sholichin M., Miyahara K., Komori T.,
Kawasaki T., Liebigs Ann. Chem., 1982, 306–314 (1982).
4) Sholichin M., Miyahara K., Kawasaki T., Heterocycles, 17, 251–257
9a
9b
0
2
′
2.00 s
(
1982).
5) Sholichin M., Miyahara K., Kawasaki T., Chem. Pharm. Bull., 33,
756–1759 (1985).
δ in ppm from TMS (coupling constants (J) in Hz are given in parentheses). a)
Signals were overlapped with other signals.
1
ized with Amberlite MB-3 column (Organo Co., Tokyo, Japan,
6) Lee S.-M., Chun H.-K., Lee C.-H., Min B.-S., Lee E.-S., Kho Y.-H.,
1
3mm i.d.×230mm) and then evaporated under reduced pres-
Chem. Pharm. Bull., 50, 1245–1249 (2002).
Nishida Y., Eto M., Miyashita H., Ikeda T., Yamaguchi K., Yoshi-
mitsu H., Nohara T., Ono M., Chem. Pharm. Bull., 56, 1022–1025
7
)
sure to give a monosaccharide fraction. This fraction was
analyzed by HPLC under the following conditions: column,
Shodex RS-Pac DC-613 (Showa Denko, Tokyo, Japan, 6.0mm
i.d.×150mm; solvent, CH CN–H O (4:1); flow rate, 1.0mL/
min; column temperature, 70°C; detector, JASCO OR-2090
plus (JASCO Co., Tokyo, Japan); pump, JASCO PU-2080; and
(2008).
8)
Ono M., Toyohisa D., Morishita T., Horita H., Yasuda S., Nishida
Y., Tanaka T., Okawa M., Kinjo J., Yoshimitsu H., Nohara T.,
Chem. Pharm. Bull., 59, 1348–1354 (2011).
Ono M., Takatsu Y., Ochiai T., Yasuda S., Nishida Y., Tanaka T.,
Okawa M., Kinjo J., Yoshimitsu H., Nohara T., Chem. Pharm. Bull.,
3
2
9)
column oven, JASCO CO-2060. The retention time (t ) and
R
optical activity of each of the monosaccharides were detected
6
0, 1314–1319 (2012).
as follows. D-apiose [tR 5.7min; optical activity, positive], l- 10) Ono M., Sugita F., Shigematsu S., Takamura C., Yoshimitsu H., Mi-
arabinose [t , 8.1min; optical activity, positive], and D-glucose
yashita H., Ikeda T., Nohara T., Chem. Pharm. Bull., 55, 1093–1096
R
[
tR, 11.8min; optical activity, positive] for 1 and 2: l-rhamnose
(2007).
1
1) Kuroda M., Mimaki Y., Ori K., Sakagami H., Sashida Y., J. Nat.
[t , 4.8min; optical activity, negative], l-arabinose [t , 8.1min;
R
R
Prod., 67, 2099–2103 (2004).
optical activity, positive], and D-glucose [t , 11.8min; optical
activity, positive] for 3; l-arabinose [t , 8.1min; optical activ-
ity, positive] and D-glucose [t , 11.8min; optical activity, posi-
tive] for 4 and 5. D-Apiose was prepared by the acidic hydro-
lysis of benzyl β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside
R
1
2) Seo S., Tomita Y., Tori K., Yoshimura Y., J. Am. Chem. Soc., 100,
331–3339 (1978).
3) Kasai R., Suzuo M., Asakawa J., Tanaka O., Tetrahedron Lett., 18,
75–178 (1977).
4) Tori K., Seo S., Yoshimura Y., Arita H., Tomita Y., Tetrahedron
Lett., 18, 179–182 (1977).
R
3
R
1
1
1
10)
(icariside F2). However, the EtOAc extract exhibited several
spots by TLC, and the aglycones of 1–5 could not be obtained. 15) Amschler G., Frahm A. W., Müller-Doblies D., Müller-Doblies U.,
Phytochemistry, 47, 429–436 (1998).
Acknowledgment We express our appreciation to Mr. H. 16) Takigawa A., Muto H., Kabata K., Okawa M., Kinjo J., Yoshimitsu
H., Nohara T., Ono M., J. Nat. Prod., 74, 2414–2419 (2011).
Harazono of Fukuoka University for the measurement of the