4
.50 (1H, d, J = 1.5, Rha H-1ꢆꢆꢆ), 1.15 (3H, d, J = 6.2, Rha H-6ꢆꢆꢆ), 3.20–4.00 (sugar protons). 13C NMR (100 MHz, CD OD,
3
ꢅ, ppm): 176.5 (C-4), 164.5 (C-7), 161.5 (C-5), 160.0 (C-4ꢆ), 158.0 (C-2), 157.0 (C-9), 134.0 (C-3), 131.5 (C-2ꢆ, 6ꢆ), 121.5 (C-
1
6
ꢆ), 114.5 (C-3ꢆ, 5ꢆ), 104.5 (C-10), 99.0 (C-6), 93.5 (C-8), 103.5 (C-1ꢆꢆ), 76.6 (C-3ꢆꢆ), 75.8 (C-5ꢆꢆ), 74.5 (C-2ꢆꢆ), 70.1 (C-4ꢆꢆ),
7.25 (C-6ꢆꢆ), 101.0 (C-1ꢆꢆꢆ), 72.5 (C-4ꢆꢆꢆ), 71.0 (C-2ꢆꢆꢆ), 70.7 (C-3ꢆꢆꢆ), 68.25 (C-5ꢆꢆꢆ), 16.0 (C-6ꢆꢆꢆ). HMBC experiment established
a correlation between C-6ꢆꢆ at ꢅ 67.25 with H-1ꢆꢆꢆ at ꢅ 4.50 which permitted the characterization of compound 2 as kaempferol
3
-O-[ꢈ-L-rhamnosyl(1ꢉ6)-O-ꢇ-D-glucoside] [12, 13].
Acid hydrolysis of compound 2 produced kaempferol and glucose + rhamnose, confirming the nature of the two sugars.
Compound 3. C H O , mp 272ꢂC. UV (MeOH, ꢄ , nm): 266, 352; + NaOH: 275, 325, 400; + AlCl : 273, 398;
2
7
30 16
max
1
3
+
AlCl /HCl: 274, 398; NaOAc: 274, 377; + H BO : 269, 357. H NMR (400 MHz, DMSO-d , ꢅ, ppm, J/Hz): 8.10 (2H, d,
3
3
3
6
J = 8.4, H-6ꢆ, 2ꢆ), 6.75 (2H, d, J = 8.4, H-5ꢆ, 3ꢆ), 6.35 (1H, d, J = 1.1, H-8), 6.15 (1H, d, J = 1.1, H-6), 5.20 (1H, d, J = 6.1, Glc H-1ꢆꢆ),
1
3
4
.50 (1H, d, J = 7.5, Glc H-1ꢆꢆꢆ), 3.20–4.00 (sugar protons). C NMR (100 MHz, DMSO-d , ꢅ, ppm): 177.5 (C-4), 164.0
6
(
(
(
C-7), 161.2 (C-5), 160.5 (C-4ꢆ), 159.0 (C-2), 157.5 (C-9), 132.0 (C-3), 131.7 (C-2ꢆ, 6ꢆ), 122.5 (C-1ꢆ), 114.2 (C-3ꢆ, 5ꢆ), 105.0
C-10), 99.0 (C-6), 93.5 (C-8), 101.5 (C-1ꢆꢆ), 77.15 (C-3ꢆꢆ), 77.15 (C-5ꢆꢆ), 72.5 (C-2ꢆꢆ), 72.23 (C-4ꢆꢆ), 63.0 (C-6ꢆꢆ), 106.90
C-1ꢆꢆꢆ), 77.2 (C-3ꢆꢆꢆ), 77.1 (C-5ꢆꢆꢆ), 74.4 (C-2ꢆꢆꢆ), 67.0 (C-4ꢆꢆꢆ), 60.6 (C-6ꢆꢆꢆ). An HMBC experiment established a correlation
between C-6ꢆꢆ at ꢅ 63.0 with H-1ꢆꢆꢆ at ꢅ 7.50, which permitted the characterization of compound 3 as kaempferol 3-O-[ꢇ-D-
glucosyl(1ꢉ6)-O-ꢇ-D-glucoside] [14].
Acid hydrolysis of compound 3 produced kaempferol and glucose, confirming the nature of the sugar.
The three flavonol glycosides are reported for the first time from the species C. supinus. Compound 1 has been
reported from the single species C. arvensis [15], while compounds 2 and 3 are new for the genus Convolvulus.
The butanolic extract of Convolvulus supinus Coss. & Kralik exhibited good antioxidant activity (IC50 = 3.3 ꢊ 0.2 ꢋg/mL)
compared with the reference (rutin IC50 = 3.01 ꢊ 0.2 ꢋg/mL).
ACKNOWLEDGMENT
The authors thank the ANDRS and DGRSDT (MESRS), Algeria for financial support.
REFERENCES
1
2
.
.
A. Benmerache, D. Berrehal, A. Kabouche, Z. Semra, O. Thomas, R. Touzani, and Z. Kabouche, Pharm. Letter,
, 371 (2013).
X. L. Meng, N. H. Riordan, J. J. Casciari, Y. Zhu, J. Zhong, M. J. Gonzalez, J. R. Miranda-Massari,
5
and H. D. Riordan, P.R. Health Sci., 21, 323 (2002).
3
4
5
6
.
.
.
.
A. H. Atta and K. Abo El-Sood, J. Ethnopharmacol., 95, 235 (2004).
Attia H. Atta and Samar M. Mouneir, J. Ethnopharmacol., 92, 303 (2004).
M. H. Moubasher, Microbiology, 49, 128 (2000).
J. S. Kristina, M. Petra, K. Macki, S. Karsten, J. Jasmin, W. Ludger, and E. Eckart, Phytochemistry, 49,
1
449 (1996).
7
8
9
.
.
.
A. M. Gapparov, N. A. Razzakov, and S. F. Aripova, Chem. Nat. Compd., 43, 291 (2007).
N. A. Razzakov and S. F. Aripova, Chem. Nat. Compd., 40, 54 (2004).
G. T. Fred, R. S. Frank, S. Partricia, P. K. Anthony, and T. D. Josie, Phytochemistry, 39, 301 (1995).
P. Quezel and S. Santa, Nouvelle Flore de lꢆAlgerie et des Regions Desertiques Meridionales, Tome II,
Editions CNRS, Paris, 1963.
1
0.
11.
12.
13.
14.
15.
T. Hatano, H. Kagawa, T. Yasuhara, and T. Okuda, Chem. Pharm. Bull., 36, 2090 (1988).
A. Nawal, P. Shagufta, F. Itrat, N. Muhammad, and H. Ajaz, Molecules, 16, 10214 (2011).
A. M. Youssef Moustafa, A. I. Khodair, and A. S. Mahmoud, Pharm. Biol., 47, 539 (2009).
M. H. Hing, Y. C. Ruo, K. L. Lai, L. C. Franky, H. Yu, and C. Zhen-Yu, Biomed. Pharmacother., 56, 289 (2002).
M. Ruben Garcia, G. Silvia Erazo, and C. Pena Raul, Biochem. Syst. Ecol., 23, 571 (1995).
937