4972
A. M. Chu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4969–4972
over the neutral THF analog consistent with published data that
indicated an 8-fold tighter binding of Fpg to a DNA duplex contain-
ing a central 4N:T over the corresponding THF:T containing du-
plex.10 Similarly, the relative affinity of hNEIL1 for the 1N and
1NBn TS analog containing duplexes when paired with A is less
than for C, as was observed with Fpg, indicating a similar prefer-
ence for C opposite the lesion, TS or product analog site. In contrast,
Nei glycosylase shows a slight preference for base pair context
with A, similar to the base specificity that has been reported
previously.29
Of this group of glycosylases, hOGG1 is distinct in showing a
marked preference for the uncharged product analog (THF) over
the positively charged abasic/TS mimic (1N, 4N). Moreover, when
the analogs were paired with A, the high affinity and specificity
of hOGG1 for the 1NBn and uncharged THF analog is completely
lost. Consistent with these results, cleavage of an abasic site by
hOGG1 is dependent on the opposite base.42 The reduced binding
affinity observed when the analogs were base paired to A is also
consistent with the large degree of selectivity of hOGG1 for re-
moval of OG or FapyG when paired with C over A, especially com-
pared to Fpg.43 The results with the 1NBn:C duplex show that the
presence of a base mimic (Bn) and C are needed for high affinity.
This suggests that both the damaged base and its opposite partner
C are utilized in TS stabilization. Indeed, recent structural studies
of an inactive hOGG1 mutant (Q315F) bound to an OG:C duplex
shows that the OG lesion is almost completely and properly in-
serted into the OG binding pocket.44 This suggests that there are
strict steric requirements for positioning of the base within the ac-
tive site to reach the proper TS required for hOGG1 mediated base
excision. The ability of the simple benzyl substituent to provide for
improved recognition of the positively charged azaribose suggests
that further elaboration of pyrrolidine nucleotides with base-like
moieties and screening may provide for derivatives with even
higher affinity for hOGG1 over other glycosylases.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
2. David, S. S.; Williams, S. D. Chem. Rev. 1998, 98, 1221.
3. Berti, P. J.; McCann, J. A. B. Chem. Rev. 2006, 106, 506.
4. Henrissat, B.; Davies, G. Curr. Opin. Struct. Biol. 1997, 7, 637.
5. Vocadlo, D. J.; Davies, G. J. Curr. Opin. Chem. Biol. 2008, 12, 539.
6. Volcadlo, D. J.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2004, 2004, 5338.
7. Witte, M. D.; Kallemeign, W. W.; Aten, J.; Li, K.-Y.; Strijland, A.; Donker-
Koopman, W. E.; van den Nieuwendijk, A. M. C. H.; Bleijlevens, B.; Kramer, G.;
Florea, B. I.; Hooibrink, B.; Hollak, C. E. M.; Ottehnhoff, R.; Boot, R. G.;
van der Marel, G. A.; Voerkleeft, H. S.; Aerts, J. M. F. G. Nat. Chem. Biol. 2010, 6,
907.
8. Deng, L.; Scharer, O. D.; Verdine, G. L. J. Am. Chem. Soc. 1997, 119, 7865.
9. Jiang, Y. L.; Drohat, A. C.; Ichikawa, Y.; Stivers, J. T. J. Biol. Chem. 2002, 277,
15385.
10. Schärer, O. D.; Nash, H. M.; Jiricny, J.; Laval, J.; Verdine, G. L. J. Biol. Chem. 1998,
273, 8592.
11. Werner, R. M.; Stivers, J. T. Biochemistry 2000, 39, 14054.
12. McCann, J. A. B.; Berti, P. J. J. Am. Chem. Soc. 2008, 130, 5789.
13. Bianchet, M. A.; Seiple, L. A.; Jiang, Y. L.; Ichikawa, Y.; Amzel, L. M.; Stivers, J. T.
Biochemistry 2003, 42, 12455.
14. Amukele, T. K.; Schramm, V. L. Biochemistry 2004, 43, 4913.
15. Roday, S.; Amukele, T.; Evans, G. B.; Tyler, P. C.; Furneaux, R. H.; Schramm, V. L.
Biochemistry 2004, 43, 4923.
16. Sturm, M. B.; Tyler, P. C.; Evans, G. B.; Schramm, V. L. Biochemistry 2009, 48,
9941.
17. Sturm, M. B.; Roday, S.; Schramm, V. L. J. Am. Chem. Soc. 2007, 129, 5544.
18. Neeley, W. L.; Essigmann, J. M. Chem. Res. Toxicol. 2006, 19, 491.
19. Delaney, S.; Delaney, J. C.; Essigmann, J. M. Chem. Res. Toxicol. 2007, 20, 1718.
20. David, S. S.; O’Shea, V. L.; Kundu, S. Nature 2007, 447, 941.
21. Fortini, P.; Pascucci, B.; Parlanti, E.; D’Errico, M.; Simonelli, V.; Dogliotti, E.
Mutat. Res. 2003, 531, 127.
22. Krishnamurthy, N.; Zhao, X.; Burrows, C. J.; David, S. S. Biochemistry 2008, 47,
7137.
23. Bandaru, V.; Sunkara, S.; Wallace, S. S.; Bond, J. P. DNA Repair 2002, 1, 517.
24. Hailer, M. K.; Slade, P. G.; Martin, B. D.; Rosenquist, T. A.; Sugden, K. D. DNA
Repair 2005, 4, 41.
Overall, the results suggest that even though the BER glycosy-
lases studied herein have similar and overlapping substrate speci-
ficities, there are distinct differences in the damaged base
recognition and excision process within this group. This may be re-
lated to their biological function and the particular demand for
accuracy versus efficiency when removing damaged bases. The dif-
ferent features of the base excision reaction coordinate for each en-
zyme are suggested by the distinct recognition patterns for the
series of TS and product analogs studied herein. This data indicates
that 1NBn, in addition to 4N and 1N, is an useful TS mimic for
studying the catalytic mechanism of BER glycosylases and may
serve as general inhibitors of these enzymes. These new chemical
tools will provide avenues for additional structural studies of
DNA glycosylases as well as potential chemical biology tools to
identify and probe BER glycosylases and associated protein part-
ners in a cellular milieu. Moreover, such studies provide a starting
point for developing high affinity inhibitors of BER glycosylases
that may have chemotherapeutic applications.
25. Bandaru, V.; Blaisdell, J. O.; Wallace, S. S. In Methods in Enzymology; Judith, C.,
Paul, M., Eds.; Academic Press, 2006; 408, p 15.
26. Hazra, T. K.; Kow, Y. W.; Hatahet, Z.; Imhoff, B.; Boldogh, I.; Mokkapati, S. K.;
Mitra, S.; Izumi, T. J. Biol. Chem. 2002, 277, 30417.
27. Tchou, J.; Bodepudi, V.; Shibutani, S.; Antoshechkin, I.; Miller, J.; Grollman, A.
P.; Johnson, F. J. Biol. Chem. 1994, 269, 15318.
28. Leipold, M. D.; Muller, J. G.; Burrows, C. J.; David, S. S. Biochemistry 2000, 39,
14984.
29. Dizdaroglu, M.; Burgess, S. M.; Jaruga, P.; Hazra, T. K.; Rodriguez, H.; Lloyd, R. S.
Biochemistry 2001, 40, 12150.
30. Erzberger, J. P.; Barsky, D.; Schärer, O. D.; Colvin, M. E.; Wilson, D. M. Nucleic
Acids Res. 1998, 26, 2771.
31. Chmiel, N. H.; Livingston, A. L.; David, S. S. J. Mol. Biol. 2003, 327, 431.
32. Chmiel, N. H.; Golinelli, M. P.; Francis, A. W.; David, S. S. Nucleic Acids Res. 2001,
29, 553.
33. Chepanoske, C. L.; Porello, S. L.; Fujiwara, T.; Sugiyama, H.; David, S. S. Nucleic
Acids Res. 1999, 27, 3197.
34. Porello, S. L.; Willaims, S. D.; Kuhn, H.; Michaels, M. L.; David, S. S. J. Am. Chem.
Soc. 1996, 118, 10684.
35. Clinch, K.; Evans, G. B.; Furneaux, R. H.; Lenz, D. H.; Mason, J. M.; Mee, S. P. H.;
Tyler, P. C.; Wilcox, S. J. Org. Biomol. Chem. 2007, 5, 2800.
36. Nguyen, T. B.; Martel, A.; Dhal, R.; Dujardin, G. Synthesis 2009, 2009, 3174.
37. Zheng, J.-F.; Chen, W.; Huang, S.-Y.; Ye, J.-L.; Huang, P.-Q. Beilstein J. Org. Chem.
2007, 3, 41.
Acknowledgements
38. Zambrano, V.; Rassu, G.; Roggio, A.; Pinna, L.; Zanardi, F.; Curti, C.; Casiraghi, G.;
Battistini, L. Org. Biomol. Chem. 2010, 8, 1725.
39. Filichev, V. V.; Pedersen, E. B. Tetrahedron 2001, 57, 9163.
40. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J.
Org. Chem. 1996, 61, 3849.
41. Leipold, M. D.; Workman, H.; Muller, J. G.; Burrows, C. J.; David, S. S.
Biochemistry 2003, 42, 11373.
42. Bjoras, M.; Luna, L.; Johnsen, B.; Hoff, E.; Haug, T.; Rognes, T.; Seeberg, E. EMBO
J. 1997, 16, 6314.
43. Krishnamurthy, N.; Haraguchi, K.; Greenberg, M. M.; David, S. S. Biochemistry
2008, 47, 1043.
We thank Dr. Sheng Cao, Dr. Micheal Leipold and Ms. Paige
McKibbin for providing the purified enzymes used in this work.
We also thank Jennifer Mason for useful discussions on the syn-
thetic work. Andrew Ferreira and Dr. Jerry Dallas of the UCD
NMR facility helped obtain the 11B NMR. This work was supported
by grants from the National Cancer Institute of the National Insti-
tutes of Health (CA67985 and CA090689). We also acknowledge
NSF (#0840444) for the department dual source diffractometer.
44. Radom, C. T.; Banerjee, A.; Verdine, G. L. J. Biol. Chem. 2006, 282, 9182.