A R T I C L E S
Yamamura et al.
1
1
aligned within the distance of 21 Å. They probably obey the
orientation rules that are different from those followed by LH1,
LH2, and chlorosomes. Recent pump-probe experiments on
alignments of porphyrins via covalent bonds, such as those
represented by dendritic porphyrins, peptide-linked porphy-
2
4
2
5
26
rins, polymerized porphyrins, metal-linked coordination
1
2
13
27
CP43 and two-dimensional spectroscopy on FMO, as well
as theoretical studies on PS1 based on F o¨ rster’s mechanism
bonds, and (3) the aggregation of porphyrins through nonco-
valent interactions in solutions, on the surface of solutions,
14
15
28
29
1
6
30
and exciton theory, showed that chlorophylls are ingeniously
aligned in these light-harvesting systems, forming small clusters
to collect and transfer the photon energy to the photosynthetic
reaction center (RC).
How can we approach the antenna Chls of PS1, PS2, green
plants, and FMO by porphyrin synthesis? Stimulated by the
integration forms of Chls in LH1, LH2, and RC sthey are
analogous to J-aggregates in stack structuresextensive studies
on porphyrin arrays and aggregates have been conducted over
the past decades aiming at the development of model systems
for LH1, LH2, and RC, as well as new electrooptical
and in protein and proteinoid cavities. Among the porphyrin
arrays synthesized using these methods, those reported by
Takahashi and Peng effectively mimic the ring-stacked and
flat-ring morphologies, respectively, of the antenna Chls of LH1
and LH2.
8
9
1
,2
17
(23) (a) Kelley, R. F.; Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede,
D. M.; Osuka, A.; Hupp, J. T.; Wasielewski, M. R. J. Am. Chem.
Soc. 2008, 130, 4277–4284. (b) Kelley, R. F.; Tauber, M. J.; Wilson,
T. M.; Wasielewski, M. R. Chem. Commun. 2007, 4407–4409. (c)
Kelley, R. F.; Shin, W.-S.; Rybtchinski, B.; Wasielewski, M. R. J. Am.
Chem. Soc. 2007, 129, 3173–3181. (d) Kelley, R. F.; Tauber, M. J.;
Wasielewski, M. R. Angew. Chem., Int. Ed. 2006, 45, 7979–7982. (e)
Song, H.-E.; Kirmaier, C.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten,
D. J. Phys. Chem. B 2006, 110, 19121–19130. (f) Song, H.-E.;
Kirmaier, C.; Yu, L.; Bocian, D. F.; Lindsey, J. S.; Holten, D. J. Phys.
Chem. B 2006, 110, 19131–19139. (g) Hindin, E.; Forties, R. A.;
Loewe, R. S.; Ambroise, A.; Kirmaier, C.; Bocian, D. F.; Lindsey,
J. S.; Holten, D.; Knox, R. S. J. Phys. Chem. B 2004, 108, 12821–
18
19
8
,9,20,21
devices.
To synthesize porphyrin arrays and aggregates,
three methods have thus far been proposed: (1) the direct binding
of porphyrin skeletons via meso-meso linkage, coordination
8
,9,22
23
bonds,
and acetylene and olefin linkage, (2) indirect
1
2832. (h) Rucareunu, S.; Mongin, O.; Schuwey, A.; Hoyler, N.;
(
11) The 90 antenna Chls (Chl a) of cyanobacterial PS1 are distributed in
three parallel ellipsoid rings so as to surround the reaction center (RC)
maintaining the nearest-neighbor Mg-Mg distance within 7.6-21.0
Å (pdb 1jbo), whereas the 33 antenna Chls of PS2 are kept within
Gossauer, A. J. Org. Chem. 2001, 66, 4973–4988. (i) Vicente,
M. G. H.; Jaquinod, L.; Smith, K. M. Chem. Commun. 1999, 1771–
1782. (j) Wytko, J.; Berl, V.; McLaughlin, M.; Tykwinski, R. R.;
Schreiber, M.; Diederich, F.; Boudon, C.; Gisselbrecht, J.-P.; Gross,
M. HelV. Chim. Acta 1998, 81, 1964–1977. (k) Yashnski, D. V.;
Ponomarev, G. V. Tetrahedron Lett. 1995, 36, 8485–8488.
8
.3-13.4 Å (pdb 1s5l) also surrounding the RC. The light-harvesting
complexes, LHC-II, in the thylakoid membrane of chloroplasts exist
as trimers, each of which comprises five Chl a and three Chl b on the
stromal side, whereas there are three Chl a and three Chl b on the
lumenal side. The antenna Chls on the stromal side form an ellipsoid
ring (Mg-Mg; 9.8-12.8 Å); on the other hand those of the lumenal
side form dimer (Mg-Mg; 9.3 Å) and tetramer (Mg-Mg; 8.2-12.5
Å) clusters (pdb 1rwt). The bacteriochlorophylls of FMO are
distributed in a shallow funnel maintaining the Mg-Mg distance within
(24) (a) Choi, M.-S.; Aida, T.; Yamazaki, T.; Yamazaki, I. Angew. Chem.,
Int. Ed. 2001, 40, 3194–3198. (b) Yeow, E. K. L.; Ghiggino, K. P.;
Reek, J. N.; Crossley, M. J.; Bosman, A. W.; Schenning, A. P. H. J.;
Meujer, E. W. J. Phy. Chem. B. 2000, 104, 2596–2606.
(25) (a) Mihara, H.; Hareta, Y.; Sakamoto, S.; Nishino, N.; Aoyagi, H.
Chem. Lett. 1997, 54, 731–737. (b) Tamiaki, H.; Onishi, M. Tetra-
hedron: Asymmetry 1999, 10, 1029–1032. (c) Solladi e´ , H.; Hamel,
A.; Gross, M. Tetrahedron Lett. 2000, 41, 6075–6078. (d) Fujitsuka,
M.; Hara, M.; Tojo, S.; Okada, A.; Troiani, V.; Solladi e´ , N.; Majima,
T. J. Phys. Chem. B, 2005, 109, 33–35.
1
1.4-13.8 Å (pdb 4bcl).
(
(
12) Di Donato, M.; van Grondelle, R.; van Stokkum, I. H. M.; Groot,
M. L. J. Phys. Chem. B 2007, 111, 7345–7352.
13) (a) Brixner, T.; Stenger, J.; Vaswani, H. M.; Cho, M.-H.; Blankenship,
R. E.; Fleming, G. R. Nature 2005, 434, 625–628. (b) Engel, G. S.;
Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Man cˇ al1, T.; Cheng, Y.-C.;
Blankenship, R. E.; Fleming, G. R. Nature 2007, 446, 782–786.
14) Byrdin, M.; Jordan, P.; Kraus, N.; Fromme, P.; Stehlik, D.; Schlodder,
E. Biophys. J. 2002, 83, 433–457.
(26) (a) Takei, F.; Nakamura, S.; Onitsuka, K.; Ishida, A.; Tojo, S.; Majima,
T.; Takahashi, S. Chem. Lett. 2003, 32, 506–507. (b) Takei, F.;
Kodama, D.; Nakamura, S.; Onitsuka, K.; Takahashi, S. J. Polym.
Sci., Part A: Polym. Chem. 2006, 44, 585–595. (c) Guildy, D. M.;
Taieb, H.; Rahman, G. M. A.; Tagmatarchis, N.; Prato, M. AdV. Mater.
2005, 17, 871–875.
(
(
(
15) F o¨ rster, Th. Discuss. Faraday Soc. 1959, 27, 7–17.
(27) (a) Kelley, R. F.; Goldsmith, R. H.; Wasielewski, M. R. J. Am. Chem.
Soc. 2007, 129, 6384–6385. (b) Drain, C. M.; Hupp, J. T.; Suslick,
K. S.; Wasielewski, M. R.; Chen, X. J. Porphyrins Phthalocyanines
2002, 6, 243–258. (c) Ikeda, A.; Ayabe, M.; Shinkai, S. Chem. Lett.
2001, 1138–1139. (d) Richeter, S.; Jeandon, C.; Gisselbrecht, J.-P.;
Ruppert, R.; Callot, H. J. J. Am. Chem. Soc. 2002, 124, 6168–6179.
(e) Wilson, G. S.; Anderson, H. L. Chem. Commun. 1999, 1539–1540.
(f) Fan, J.; Whiteford, J. A.; Olenyuk, B.; Levin, M. D.; Stang, P. J.;
Fleischer, E. B. J. Am. Chem. Soc. 1999, 121, 2741–2752.
16) Rosenfeld, V. L. Z. Phys 1928, 52, 161. Bohm, D. Quantum Theory;
Prentice-Hall: New York, 1961; p 427. Davydov, A. S. Theory of
Molecular Excitons; McGraw-Hill: New York, 1962; pp 141-155.
Davydov, A. S. Theory of Molecular Excitons; Plenum Press: New
York, London, 1971; pp 23-112. Kasha, M.; Rawls, H. R.; El-
Bayoumi, A. Pure Appl. Chem. 1965, 11, 371–392. Kasha, M. Radiat.
Res. 1963, 20, 55–71.
(17) Deisenhofer, J.; Epp, O.; Miki, K.; Huber, R.; Michel, H. Nature 1985,
3
18, 618–624.
(28) (a) Okamura, M. Y.; Feher, G.; Nelson, N. Photosynthesis; Govindjee,
Ed.; Academic Press: New York, 1982; pp 195-272. (b) Pasternack,
R. F.; Huber, P. R.; Boyd, P.; Engasser, G.; Francesconi, L.; Gibbs,
E.; Fasella, P.; Venturo, G. C.; Hinds, L. D. J. Am. Chem. Soc. 1972,
94, 4511–4517. (c) Yamamura, T. Chem. Lett. 1977, 773. (d)
Yamamura, T. Chem. Lett. 1978, 193. (e) Barber, D. C.; Freitag-
Beeston, R. A.; Whitten, D. G. J. Phys. Chem. 1991, 95, 4074–4086.
(f) Ribo, J. M.; Crusats, J.; Farrera, J.-A.; Valero, M. L. J. Chem.Soc.,
Chem. Commun. 1994, 681–682. (g) Pasternack, R. F.; Schaefer, K. F.;
Hambright, P. Inorg. Chem. 1994, 33, 2062–2065. (h) Akins, D. L.;
Zhu, H.-R.; Guo, C. J. Phys. Chem. 1994, 98, 3612–3618. (i) Maiti,
N.; Ravikanth, M.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. 1995,
99, 17192–17197. (j) Akins, D. L.; Zhu, H.-R.; Guo, C. J. Phys. Chem.
1996, 100, 5420–5425. (k) Jin, R.-H.; Aoki, S.; Shima, K. J. Chem.
Soc., Faraday Trans. 1997, 93, 3945–3953. (l) Bhyrappa, P.; Wilson,
S. R.; Suslick, K. S. J. Am. Chem. Soc. 1997, 119, 8492–8502. (m)
Maiti, N. C.; Mazumdar, S.; Periasamy, N. J. Phys. Chem. B 1998,
102, 1528–38. (n) Choi, M. Y.; Pollard, J. A.; Webb, M. A.; McHale,
J. L. J. Am. Chem. Soc. 2003, 125, 810–820.
(
18) (a) Jelley, E. E. Nature (London) 1936, 138, 1009. (b) Scheibe, G.
Angew. Chem. 1936, 49, 563. (c) Fleisher, E. B.; Palmer, J. M.;
Srivastava, T. S.; Chatterjee, A. J. Am. Chem. Soc. 1971, 93, 3162–
3
167. (d) Pasternack, R. F.; Huber, P. R.; Boyd, P.; Engasser, G.;
Francesconi, L.; Gibbs, E.; Fasella, P.; Venturo, G. C.; Hinds, L. de
C. J. Am. Chem. Soc. 1972, 94, 4511–4517. (e) Ohno, O.; Kaizu, Y.;
Kobayashi, H. J. Chem. Phys. 1993, 99, 4128–4139.
(
(
19) (a) Wasielewski, M. R. J. Org. Chem. 2006, 71, 5051–5066. (b)
Wasielewski, M. R. Chem. ReV. 1992, 92, 435–461.
20) (a) Aratani, N.; Osuka, A.; Kim, Y. H.; Jeong, D. H.; Kim, D. Angew.
Chem., Int. Ed. 2000, 39, 1458–1462. (b) Nakano, A.; Yamazaki, T.;
Nishimura, Y.; Akimoto, S.; Yamazaki, I.; Osuka, A. Chem.sEur. J.
2
000, 6, 3254–3271. (c) Tsuda, A.; Osuka, A. Science 2001, 293, 79–
8
2.
(
21) (a) Dalton, L. R.; Harper, A. W.; Ghosn, R.; Steier, W. H.; Ziari, M.;
Fetterman, H.; Shi, Y.; Mustacich, R. V.; Jen, A. K.-Y.; Shea, K.
J. Chem. Mater 1995, 7, 1060–1081. (b) Ogawa, K.; Ohashi, A.;
Kobuke, Y. J. Am. Chem. Soc. 2003, 125, 13356–13357. (c) Collini,
E.; Ferrante, C.; Bozio, R.; Lodib, A.; Ponterini, G. J. Mater. Chem.
(29) (a) Xu, W.; Guo, H.; Akins, D. L. J. Phys. Chem. B 2001, 105, 1543–
1546. (b) Okada, S.; Segawa, H. J. Am. Chem. Soc. 2003, 125, 2792–
2796. (c) Sadasivan, S.; K o¨ hler, K.; Sukhorukov, G. B. AdV. Funct.
Mater. 2006, 16, 2083–2088.
2
006, 16, 1573–1578.
(
22) Morikawa, S.; Ikeda, C.; Kazuya Ogawa, K.; Kobuke, Y. Lett. Org.
Chem. 2004, 1, 6–11.
1
1720 J. AM. CHEM. SOC. 9 VOL. 131, NO. 33, 2009