Chemistry - A European Journal
10.1002/chem.201800757
COMMUNICATION
gradient) yielding the hydroarylation product 3 in the form of its methyl
ester.
Experimental Section
2 2
An oven-dried 20 mL vessel was charged with [RuCl (p-cym)] (6.40 mg,
0.01 mmol), lithium phosphate (57.9 mg, 0.50 mmol), and 1 (0.50 mmol).
2
Under exclusion of air, H O (2 mL) and 2 (0.70 mmol) were added via
Acknowledgements
syringe. The resulting mixture was stirred at 110 °C for 12 h. After this time
period, MeCN (3 mL), K CO (138 mg, 1.00 mmol), and MeI (358 mg, 2.50
2
3
We thank Umicore for the donation of chemicals, the CSC
mmol) were added and the mixture was stirred at 60 °C for 2.5 h. Brine (20
mL) was added and the resulting mixture was extracted with ethyl acetate
(
fellowships to G.Z. and F.J.) and the DFG (EXC 1069 “RESOLV”
(
3×20 mL). The combined organic layers were dried over MgSO
and the volatiles were removed under reduced pressure. The residue was
purified by column chromatography (SiO , ethyl acetate/cyclohexane
4
, filtered,
and SFB/TRR 88 “3MET”) for financial support.
2
Keywords: ruthenium • C–H alkylation • benzoic acids • olefins •
hydroarylation
[
1]
2]
Y. Segawa, T. Maekawa, K. Itami, Angew. Chem. 2015, 127, 68–83;
Chem. Int. Ed. 2014, 53, 5410–5413; f) J. Kim, S.-W. Park, M.-H. Baik,
S. Chang, J. Am. Chem. Soc. 2015, 137, 13448–13451; g) Y. Ebe, T.
Nishimura, J. Am. Chem. Soc. 2015, 137, 5899–5902; h) M. Schinkel, I.
Marek, L. Ackermann, Angew. Chem. 2013, 125, 4069–4072; Angew.
Chem. Int. Ed. 2013, 52, 3977–3980.
Angew. Chem. Int. Ed. 2015, 54, 66–81.
[
a) D. Y.-K. Chen, S. W. Youn, Chem. – Eur. J. 2012, 18, 9452–9474; b)
G. M. Cragg, P. G. Grothaus, D. J. Newman, Chem. Rev. 2009, 109,
3012–3043; c) D. J. Newman, G. M. Cragg, J. Nat. Prod. 2004, 67, 1216–
1238; d) L. McMurray, F. O’Hara, M. J. Gaunt, Chem. Soc. Rev. 2011,
40, 1885–1898.
[10] a) Z. Shi, C. Grohmann, F. Glorius, Angew. Chem. 2013, 125, 5503–
5507; Angew. Chem. Int. Ed. 2013, 52, 5393–5397; b) K. Shibata, T.
Yamaguchi, N. Chatani, Org. Lett. 2015, 17, 3584–3587; c) T. A. Davis,
T. K. Hyster, T. Rovis, Angew. Chem. 2013, 125, 14431–14435; Angew.
Chem. Int. Ed. 2013, 52, 14181–14185; d) M. Hatano, Y. Ebe, T.
Nishimura, H. Yorimitsu, J. Am. Chem. Soc. 2016, 138, 4010–4013; e)
G. Huang, P. Liu, ACS Catal. 2016, 6, 809–820; f) H. Tsujita, Y. Ura, S.
Matsuki, K. Wada, T. Mitsudo, T. Kondo, Angew. Chem. 2007, 119,
5252–5255; Angew. Chem. Int. Ed. 2007, 46, 5160–5163; g) G. Rouquet,
N. Chatani, Chem. Sci. 2013, 4, 2201–2208; h) K. Ghosh, R. K. Rit, E.
Ramesh, A. K. Sahoo, Angew. Chem. 2016, 128, 7952–7956; Angew.
Chem. Int. Ed. 2016, 55, 7821–7825; i) L. Ilies, Q. Chen, X. Zeng, E.
Nakamura, J. Am. Chem. Soc. 2011, 133, 5221–5223; j) G. Pototschnig,
N. Maulide, M. Schnürch, Chem. – Eur. J. 2017, 23, 9206 –9232.
[11] a) R. Shang, L. Ilies, E. Nakamura, Chem. Rev. 2017, 117, 9086–9139;
b) J. M. Neely, T. Rovis, J. Am. Chem. Soc. 2013, 135, 66–69; c) J. Loup,
D. Zell, J. C. A. Oliveira, H. Keil, D. Stalke, L. Ackermann, Angew. Chem.
2017, 129, 14385–14389; Angew. Chem. Int. Ed. 2017, 56, 14197–
14201; d) Y. Kuninobu, K. Takai, Chem. Rev. 2011, 111, 1938–1953; e)
W. Xu, N. Yoshikai, Angew. Chem. 2014, 126, 14390–14394; Angew.
Chem. Int. Ed. 2014, 53, 14166–14170; f) Y. Kuninobu, Y. Nishina, M.
Shouho, K. Takai, Angew. Chem. 2006, 118, 2832–2834; Angew. Chem.
Int. Ed. 2006, 45, 2766–2768.
[3]
a) N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010,
7, 1348–1349; b) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams,
8
Org. Biomol. Chem. 2006, 4, 2337; c) J. Yamaguchi, A. D. Yamaguchi,
K. Itami, Angew. Chem. 2012, 124, 9092–9142; Angew. Chem. Int. Ed.
2012, 51, 8960–9009.
[
4]
5]
a) T. B. Poulsen, K. A. Jørgensen, Chem. Rev. 2008, 108, 2903–2915;
b) E. Le Grognec, J.-M. Chrétien, F. Zammattio, J.-P. Quintard, Chem.
Rev. 2015, 115, 10207–10260; c) C. J. Li, Chem. Rev. 1993, 93, 2023–
2
035; d) L. Yang, H. Huang, Chem. Rev. 2015, 115, 3468–3517.
a) F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366–
447; b) T. Hayashi, M. Takahashi, Y. Takaya, M. Ogasawara, J. Am.
[
2
Chem. Soc. 2002, 124, 5052–5058; c) E. M. Simmons, B. Mudryk, A. G.
Lee, Y. Qiu, T. M. Razler, Y. Hsiao, Org. Process Res. Dev. 2017, 21,
1659–1667; d) M. M. Heravi, M. Dehghani, V. Zadsirjan, Tetrahedron
Asymmetry 2016, 27, 513–588; e) T. Hayashi, K. Yamasaki, Chem. Rev.
2003, 103, 2829–2844; f) K. Fagnou, M. Lautens, Chem. Rev. 2003, 103,
169–196; g) M. Sakai, H. Hayashi, N. Miyaura, Organometallics 1997,
16, 4229–4231.
[6]
a) P. Arya, H. Qin, Tetrahedron 2000, 56, 917–947; b) C.-T. Yang, Z.-Q.
Zhang, Y.-C. Liu, L. Liu, Angew. Chem. 2011, 123, 3990–3993; Angew.
Chem. Int. Ed. 2011, 50, 3904–3907; c) D. H. Burns, J. D. Miller, H.-K.
Chan, M. O. Delaney, J. Am. Chem. Soc. 1997, 119, 2125–2133.
S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N.
Chatani, Nature 1993, 366, 529−531.
[12] a) S. Dana, A. Mandal, H. Sahoo, M. Baidya, Org. Lett. 2017, 19, 1902–
1905; b) P. A. Donets, N. Cramer, Angew. Chem. 2015, 127, 643–647;
Angew. Chem. Int. Ed. 2015, 54, 633–637; c) Z. Dong, Z. Ren, S. J.
Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333–9403; d) P.
Dixneuf, H. Doucet (Eds) C–H Bond Activation and Catalytic
Functionalization, Springer International Publishing, Switzerland 2016.
[13] a) P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Angew.
Chem. 2010, 122, 6779–6782; Angew. Chem. Int. Ed. 2010, 49, 6629–
6632; b) L. Ackermann, J. Pospech, Org. Lett. 2011, 13, 4153–4155; c)
L. Ackermann, S. Fenner, Org. Lett. 2011, 13, 6548–6551; d) L.
Ackermann, L. Wang, R. Wolfram, A. V. Lygin, Org. Lett. 2012, 14, 728–
731.
[
7]
8]
[
a) H. Oh, J. Park, S. H. Han, N. K. Mishra, S. H. Lee, Y. Oh, M. Jeon, G.-
J. Seong, K. Y. Chung, I. S. Kim, Tetrahedron 2017, 73, 4739–4749; b)
X.-Y. Shi, C.-J. Li, Org. Lett. 2013, 15, 1476–1479; c) D. Xing, G. Dong,
J. Am. Chem. Soc. 2017, 139, 13664–13667; d) T. Shirai, Y. Yamamoto,
Angew. Chem. 2015, 127, 10032–10035; Angew. Chem. Int. Ed. 2015,
54, 9894-9897; e) A. Bartoszewicz, B. Martín-Matute, Org. Lett. 2009, 11,
1749–1752; f) V. Lanke, K. R. Bettadapur, K. R. Prabhu, Org. Lett. 2015,
17, 4662–4665; g) M. Grellier, L. Vendier, B. Chaudret, A. Albinati, S.
Rizzato, S. Mason, S. Sabo-Etienne, J. Am. Chem. Soc. 2005, 127,
7592-17593; h) D. Zell, M. Bursch, V. Müller, S. Grimme, L. Ackermann,
Angew. Chem. 2017, 129, 10514–10518; Angew. Chem. Int. Ed. 2017,
1
[14] a) L. J. Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662-664; b) L.
J. Goossen, F. Collet, K. Goossen, Isr. J. Chem. 2010, 50, 617–629; c)
Y. Wei, P. Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864–8907.
[15] a) P. S. Thuy-Boun, G. Villa, D. Dang, P. Richardson, S. Su, J.-Q. Yu, J.
Am. Chem. Soc. 2013, 135, 17508–17513; b) G. Chen, Z. Zhuang, G.-C.
Li, T. G. Saint-Denis, Y. Hsiao, C. L. Joe, J.-Q. Yu, Angew. Chem. 2017,
129, 1528–1531; Angew. Chem. Int. Ed. 2017, 56, 1506–1509; c) R. Giri,
N. Maugel, J.-J. Li, D.-H. Wang, S. P. Breazzano, L. B. Saunders, J.-Q.
Yu, J. Am. Chem. Soc. 2007, 129, 3510–3511; d) Y.-H. Zhang, B.-F. Shi,
56, 10378–10382; i) N. Kimura, T. Kochi, F. Kakiuchi, J. Am. Chem. Soc.
2017, 139, 14849–14852.
[9]
a) L. Yang, B. Qian, H. Huang, Chem. – Eur. J. 2012, 18, 9511–9515; b)
L. Yang, C. A. Correia, C.-J. Li, Org. Biomol. Chem. 2011, 9, 7176–7179;
c) M. Zhang, G. Huang, Dalton Trans. 2016, 45, 3552–3557; d) S.
Takebayashi, T. Shibata, Organometallics 2012, 31, 4114–4117; e) T.
Shibata, T. Shizuno, Angew. Chem. 2014, 126, 5514-5517; Angew.
This article is protected by copyright. All rights reserved.