Angewandte Chemie International Edition
10.1002/anie.201913794
RESEARCH ARTICLE
Conclusion
[4]
[5]
a) A. Burger, Prog. Drug Res. 1971, 15, 227; b) A. Gagnon, M. Duplessis,
L. Fader, Org. Prep. Proced. Int. 2010, 42, 1; c) T. T. Talele, J. Med.
Chem. 2016, 59, 8712.
We have developed the first Rh(III)-catalyzed and DDG-assisted
enantio- and diastereoselective C–H cyclopropylation of N-
phenoxytosylamides with cyclopropenyl alcohols as a result of ring-
retentive internal redox coupling, which complements the few existing
methods to synthesize trans-cyclopropanes. Both racemic and
enantioselective reactions have also been realized with broad
functional group compatibility under mild and operationally simple
conditions. Subsequent derivatization of natural products and
biological application of the selected products as the screening of the
promising antitumor drugs further highlighted the utility of the
developed protocol. Through detailed experimental and
computational investigations, the role of the DDGs, the origin of the
regioselectivity, the specific trans-diastereoselectivity, and the (S,S)-
enantioselectivity have been elucidated. Significantly, Noyori-type
outer sphere concerted proton-hydride transfer mechanism was
identified as a key factor for controlling such trans-specific selectivity.
Future studies on asymmetric C–H activation using other strained rings
are ongoing in our laboratories and will be reported in due course.
F. G. Njoroge, K. X. Chen, N. Y. Shih, J. J. Piwinski, Acc. Chem. Res.
2
008, 41, 50.
[6]
a) M. P. Doyle, D. C. Forbes, Chem. Rev. 1998, 98, 911; b) H. M. L.
Davies, E. G. Antoulinakis, Org. React. 2001, 57, 1; c) M. P. Doyle, R.
Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704; d) M. P. Doyle,
K. O. Marichev, Org. Biomol. Chem. 2019, 17, 4183.
[7]
a) S. E. Denmark, S. P. O'Connor, J. Org. Chem. 1997, 62, 584; b) A. B.
Charette, H. Juteau, H. Lebel, C. Molinaro, J. Am. Chem. Soc. 1998, 120,
1
2
2
1943; c) A. B. Charette, C. Molinaro, C. J. Brochu, J. Am. Chem. Soc.
001, 123, 12168; d) H. Shitama, T. Katsuki, Angew. Chem., Int. Ed.
008, 47, 2450, Angew. Chem. 2008, 120, 2484.
[8]
a) C. D. Papageorgiou, M. A. Cubillo de Dios, S. V. Ley, M. J. Gaunt,
Angew. Chem., Int. Ed. 2004, 43, 4641; Angew. Chem. 2004, 116, 4741; b)
C. C. Johansson, N. Bremeyer, S. V. Ley, D. R. Owen, S. C. Smith, M. J.
Gaunt, Angew. Chem., Int. Ed. 2006, 45, 6024; Angew. Chem. 2006, 118,
6170; c) H. Kakei, T. Sone, Y. Sohtome, S. Matsunaga, M. Shibasaki, J.
Am. Chem. Soc. 2007, 129, 13410; d) V. K. Aggarwal, E. Alonso, G.
Fang, M. Ferrara, G. Hynd, M. Porcelloni, Angew. Chem., Int. Ed. 2001,
40, 1433; Angew. Chem. 2001, 113, 1482; e) R. K. Kunz, D. W. C.
MacMillan, J. Am. Chem. Soc. 2005, 127, 3240. For a review, see: f) C.
M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev. 2014, 114, 2390.
For recent examples, see: a) O. F. Brandenberg, C. K. Prier, K. Chen, A.
M. Knight, Z. Wu, F. H. Arnold, ACS Catal. 2018, 8, 2629; b) A. Tinoco,
Y. Wei, J.-P. Bacik, D. M. Carminati, E. J. Moore, N. Ando, Y. Zhang, R.
Fasan, ACS Catal. 2019, 9, 1514; c) K. Chen, S.-Q. Zhang, O. F.
Brandenberg, X. Hong, F. H. Arnold, J. Am. Chem. Soc. 2018, 140,
Acknowledgements
We acknowledge financial support from NSFC (21525208, 21877020,
and 21603279), Guangdong Natural Science Funds for Distinguished
Young Scholar (2017A030306031), China Postdoctoral Science
Foundation (2019TQ0192), and Fundamental Research Funds for the
Central Universities (GK201903028).
[9]
Keywords: Rhodium
• trans-cyclopropane • asymmetric C–H
1
6402. For selected reviews, see: d) F. P. Guengerich, F. K. Yoshimoto
Chem. Rev. 2018, 118, 6573; e) J. C. Lewis, Acc. Chem. Res. 2019, 52,
76.
activation • N-phenoxysulfonamide • cyclopropenyl alcohol
5
[
1]
a) H. Liu, C. T. Walsh, Biochemistry of the Cyclopropyl Group. In The
Chemistry of the Cyclopropyl Group; S. Patai, Z. Rappaport, Eds.; Wiley:
Chichester, 1987; p 959; b) W. A. Donaldson, Tetrahedron 2001, 57,
10] Other representative examples of cyclopropane synthesis via RhIII
[
[
[
catalysis, see a) T. Piou, F. Romanov-Michailidis, M. A. Ashley, M.
Romanova-Michaelides, T. Rovis, J. Am. Chem. Soc. 2018, 140, 9587; b)
T. Piou, T. Rovis, J. Am. Chem. Soc. 2014, 136, 11292; c) H. Wang, S.
Yu, Z. Qi, X. Li, Org. Lett. 2015, 17, 2812; d) E. J. Phipps, T. Rovis, J.
Am. Chem. Soc. 2019, 141, 6807.
8
589; c) J. Pietruszka, Chem. Rev. 2003, 103, 1051; d) L. A. Wessjohann,
W. Brandt, Chem. Rev. 2003, 103, 1625; e) D. Y.-K. Chen, R. H. Pouwer,
J. A. Richard, Chem. Soc. Rev. 2012, 41, 4631; f) G. Bartoli, G.
Bencivenni, R. Dalpozzo, Synthesis 2014, 46, 979.
11] Reviews on the synthesis of the cyclopropanes: a) L. Dian, I. Marek,
Chem. Rev. 2018, 118, 8415; b) D. Didier, I. Marek, In Copper-Catalyzed
Asymmetric Synthesis; Alexakis, A.; Krause, N.; Woodward, S. eds.
[2]
a) A. Ortega, R. Manzano, U. Uria, L. Carrillo, E. Reyes, T. Tejero, P.
Merino, J. L. Vicario, Angew. Chem., Int. Ed. 2018, 57, 8225; Angew.
Chem. 2018, 130, 8357; b) S. Asako, T. Kobashi, K. Takai, J. Am. Chem.
Soc. 2018, 140, 15425; c) G.-W. Wang, J. F. Bower, J. Am. Chem. Soc.
(Wiley-VCH: Weinheim, Germany), 2014, pp. 267; c) D. S. Mꢀller, I.
Marek, Chem. Soc. Rev. 2016, 45, 4552; d) M. Rubin, M. Rubina, V.
Gevorgyan, Chem. Rev. 2007, 107, 3117.
2
018, 140, 2743; d) S. Yang, D. Lu, H. Huo, F. Luo, Y Gong, Org. Lett.
018, 20, 6943; e) W. Fang, Y. Wei, M. Shi, Org. Lett. 2018, 20, 7141; f)
2
12] For selected examples, see: a) H. Zhang, W. Huang, T. Wang, F. Meng,
Angew. Chem., Int. Ed. 2019, 58, 1; Angew. Chem. 2019, 131, 11165; b)
Z. Li, M. Zhang, Y. Zhang, S. Liu, J. Zhao, Q. Zhang, Org. Lett. 2019, 21,
D. Bai, T. Xu, C. Ma, X. Zheng, B. Liu, F. Xie, X. Li, ACS Catal. 2018, 8,
194; g) T. Avullala, P. Asgari, Y. Hua, A. Bokka, S. G. Ridlen, K. Yum,
4
H. V. R. Dias, J. Jeon, ACS Catal. 2019, 9, 402; h) S. Yang, L. Wang, H.
Zhang, C. Liu, L. Zhang, X. Wang, G. Zhang, Y. Li, Q. Zhang, ACS
Catal. 2019, 9, 716; i) J. Yang, Q. Sun, N. Yoshikai, ACS Catal. 2019, 9,
5
432; c) L. Dian, I. Marek, Angew. Chem., Int. Ed. 2018, 57, 3682;
Angew. Chem. 2018, 130, 3744; d) D. S. Müller, I. Marek, J. Am. Chem.
Soc. 2015, 137, 15414; e) X. Liu, J. M. Fox, J. Am. Chem. Soc. 2006, 128,
1
973; j) H. Sommer, T. Weissbrod, I. Marek, ACS Catal. 2019, 9, 2400.
5
6
600; f) L. Dian, D. S. Müller, I. Marek, Angew. Chem., Int. Ed. 2017, 56,
783; Angew. Chem. 2017, 129, 6887; g) M. Simaan, I. Marek, Angew.
[3]
a) L. Souillart, N. Cramer, Chem. Rev. 2015, 115, 9410; b) G. Fumagalli,
S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404.
Chem., Int. Ed. 2018, 57, 1543; Angew. Chem. 2018, 130, 1559.
13] a) F. Liu, X. Bugaut, M. Schedler, R. Fröhlich, F. Glorius, Angew. Chem.,
Int. Ed. 2011, 50, 12626; Angew. Chem. 2011, 123, 12834; b) H.-L. Teng,
[
This article is protected by copyright. All rights reserved.