Journal of the American Chemical Society
ARTICLE
’ AUTHOR INFORMATION
(18) Rozen, S.; Hagooly, A. e-EROS Encyclopedia of Reagents for
104554785/HOME, 2001.
(19) Symons, E. A.; Clermont, M. J. J. Am. Chem. Soc. 1981, 103, 3127.
(20) Folleas, B.; Marek, I.; Normant, J.-F.; Saint-Jalmes, L. Tetra-
hedron 2000, 56, 275.
Corresponding Author
(21) (a) Shono, T.; Ishifune, M.; Okada, T.; Kashimura, S. J. Org.
Chem. 1991, 56, 2. (b) Folleas, B.; Marek, I.; Normant, J.-F.; Saint-
Jalmes, L. Tetrahedron Lett. 1998, 39, 2973. (c) Russell, J.; Roques, N.
Tetrahedron 1998, 54, 13771. (d) For an overview of synthetic methods
based on deprotonation of CF3H, see: Langlois, B. R.; Billard, T. ACS
Symp. Ser. 2005, 911, 57.
’ ACKNOWLEDGMENT
We thank Prof. Vladimir I. Bakhmutov for selected NMR
data treatment and Fedor M. Miloserdov for valuable comments.
The ICIQ Foundation and Consolider Ingenio 2010 (Grant
CSD2006-0003) are thankfully acknowledged for support.
(22) (a) Dolbier, W. R., Jr.; Wojtowicz, H.; Burkholder, C. R. J. Org.
Chem. 1990, 55, 5420. (b) Dolbier, W. R. Guide to Fluorine NMR for
Organic Chemists; Wiley & Sons: Hoboken, NJ, 2009.
(23) These are the averaged values obtained from the two rate
constants, 41.7 and 83.3 sꢀ1, and ΔGq = 15.2 and 14.8 kcal molꢀ1, as
derived from the line-shape analysis. While both the 1H and 19F NMR
spectra (Figures 2 and 3) could be quickly recorded for a freshly
prepared sample, the 13C NMR experiment took hours to observe the
CuCF3 resonance (Figure 4). As a result of partial decomposition (see
text) during the long data acquisition, the resonances from the two
nonequivalent t-BuO groups displayed deviation from the original 1:1
integral ratio to ∼2:1. It is also likely that the t-BuO groups of the
carbene ligand C(OBu-t)2 emerging from the decomposition are also
involved in the exchange via degenerate nucleophilic substitution at the
Cu-coordinated carbene carbon. For details, see the subsection entitled
“Cuprating reagents based on CuCl, CuBr, CuI, and various MOR (M =
K, Na). Stability and decomposition of the CuCF3 reagents.”
(24) (a) Shapiro, I. O.; Bogachev, Yu. S.; Bulatova, N. P.; Shapet’ko,
N. N.; Shatenshtein, A. I. Zh. Obsh. Khim. 1990, 60, 244. (b) Chisholm,
M. H.; Drake, S. R.; Naiini, A. A.; Streib, W. E. Polyhedron 1991,
10, 337.
(25) (a) It has been reported that a solution containing [t-BuOCu]4
and t-BuOH (1:4) in C6D6 displays one singlet resonance at 1.16
ppm.25b (b) Geerts, R. L.; Huffman, J. C.; Folting, K.; Lemmen, T. H.;
Caulton, K. G. J. Am. Chem. Soc. 1983, 105, 3503.
(26) Tsuda, T.; Hashimoto, T.; Saegusa, T. J. Am. Chem. Soc. 1972,
94, 958.
(27) Whitesides, G. M.; Sadowski, J. S.; Lilburn, J. J. Am. Chem. Soc.
1974, 96, 2829.
(28) Greiser, T.; Weiss, E. Chem. Ber. 1976, 109, 3142.
(29) Lemmen, T. H.; Goeden, G. V.; Huffman, J. C.; Geerts, R. L.;
Caulton, K. G. Inorg. Chem. 1990, 29, 3680.
’ REFERENCES
(1) For selected monographs, see: (a) Clark, J. H.; Wails, D.;
Bastock, T. W. Aromatic Fluorination; CRC Press: Boca Raton, FL,
1996. (b) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH:
Weinheim, Germany, 2004. (c) Uneyama, K. Organofluorine Chemistry;
Blackwell: Oxford, U. K., 2006. (d) Ojima, I. Fluorine in Medicinal
Chemistry and Chemical Biology; Wiley-Blackwell: Chichester, U. K.,
2009.
(2) Burton, D. J.; Yang, Z. Y. Tetrahedron 1992, 48, 189.
(3) McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 32, 6555.
(4) Burton, D. J.; Lu, L. Top. Curr. Chem. 1997, 193, 45.
(5) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432.
(6) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S.
Tetrahedron 2011, 67, 2161.
(7) Qing, F.-L.; Zheng, F. Synlett 2011, 1052.
(8) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(9) For selected reviews, see: (a) Kirsch, P.; Bremer, M. Angew.
Chem., Int. Ed. 2000, 39, 4216. (b) Hird, M. Chem. Soc. Rev. 2007,
36, 2070. (c) Berger, R.; Resnati, G.; Metrangolo, P.; Weber, E.; Hulliger,
J. Chem. Soc. Rev. 2011, 40, 3496.
(10) Filler, R. Adv. Fluorine Chem. 1970, 6, 1.
(11) (a) McLoughlin, V. C. R.; Thrower, J. U.S. Patent 3408411,
1968. (b) McLoughlin, V. C. R.; Thrower, J. Tetrahedron 1969, 25, 5921.
(12) (a) Kobayashi, Y.; Kumadaki, I. Tetrahedron Lett. 1969, 4095.
(b) Sato, K.; Tarui, A.; Omote, M.; Ando, A.; Kumadaki, I. Synthesis
2010, 1865.
(13) (a) Inoue, M.; Araki, K. Jpn. Patent JP 2009-234921, 2009.
(b) Oishi, M.; Kondo, H.; Amii, H. Chem. Commun. 2009, 1909.
(c) Knauber, T.; Arikan, F.; R€oschenthaler, G.-V.; Goossen, L. J. Chem.—
Eur. J. 2011, 17, 2689. (d) Popov, I.; Lindeman, S.; Daugulis, O. J. Am.
Chem. Soc. 2011, 133, 9286. (e) Weng, Z.; Lee, R.; Jia, W.; Yuan, Y.;
Wang, W.; Feng, X.; Huang, K.-W. Organometallics 2011, 30, 3229.
(14) (a) Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc.
2008, 130, 8600. (b) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A.
Organometallics 2008, 27, 6233. (c) Morimoto, H.; Tsubogo, T.;
Litvinas, N. D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2011, 50, 3793.
(d) Tomashenko, O. A.; Escudero-Adan, E. C.; Martinez Belmonte, M.;
Grushin, V. V. Angew. Chem., Int. Ed. 2011, 50, 7655.
(15) (a) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006,
128, 12644. (b) Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006,
128, 4632. (c) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(16) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 2010, 328, 1679. Also, see: Samant, B. S.;
Kabalka, G. W. Chem. Commun. 2011, 47, 7236.
(17) (a) Pd-catalyzed trifluoromethylation via cyclopalladation with
an electrophilic CF3 source17b and stoichiometric reactions of Ar-CF3
reductive elimination from Pd(IV)17cꢀe were also recently reported.
These transformations, however, are unrelated to the area of nucleophilic
trifluoromethylation of aryl halides because they do not involve Pd(0)
that is required for Ar-X bond activation. (b) Wang, X.; Truesdale, L.;
Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3648. (c) Ball, N. D.; Kampf, J. W.;
Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. (d) Ye, Y.; Ball, N. D.;
Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 14682. (e) Ball,
N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577.
(30) Hakansson, M.; Lopes, C.; Jagner, S. Inorg. Chim. Acta 2000,
304, 178.
(31) Cornforth, J.; Sierakowski, A. F.; Wallace, T. W. J. Chem. Soc.,
Chem. Commun. 1979, 294.
(32) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; MacBride,
J. A. H.; Wade, K. J. Organomet. Chem. 1993, 462, 19.
(33) Van der Sluys, L. S.; Miller, M. M.; Kubas, G. J.; Caulton, K. G.
J. Am. Chem. Soc. 1991, 113, 2513.
(34) Meyer, C.; Grutzmacher, H.; Pritzkow, H. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2471.
(35) Orlov, N. A.; Bochkarev, L. N.; Nikitinsky, A. V.; Kropotova, V.
Yu.; Zakharov, L. N.; Fukin, G. K.; Khorshev, S. Ya. J. Organomet. Chem.
1998, 560, 21.
(36) (a) Pistoia, G.; Pecci, G.; Scrosati, B. Ric. Sci. 1967, 37, 1167.
(b) Varlamova, T. M.; Gerasimova, G. V.; Mushtakova, S. P. Russ. J. Phys.
Chem. 2006, 80, 1671.
(37) Purdy, A. P.; George, C. F. Polyhedron 1995, 14, 761.
(38) (a) Fiaschi, P.; Floriani, C.; Pasquali, M.; Chiesi-Villa, A.; Guastini,
C. J. Chem. Soc., Chem. Commun. 1984, 888. (b) Fiaschi, P.; Floriani, C.;
Pasquali, M.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1986, 25, 462.
(39) Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem., Int.
Ed. 2010, 49, 2185.
(40) (a) In the 1H NMR spectra of DMF-d7 solutions of CuX (X =
Cl, Br, I) and t-BuOM (M = K, Na) (1:2) only one singlet from the
20912
dx.doi.org/10.1021/ja2081026 |J. Am. Chem. Soc. 2011, 133, 20901–20913