Table 2 DNA affinity of DIP (LHS) versus the corresponding IP structure (RHS)
a
21
4
a
21
4
DIP structure
Binding constants ; K (M ) 6 10
Corresponding IP structure
Binding constants ; K (M ) 6 10
3
4
2
.50 ¡ 0.14
.50 ¡ 0.15
.90 ¡ 0.11
5.28 ¡ 0.19
6.11 ¡ 0.40
11.8 ¡ 0.10
a
Salmon testes DNA.
610 nm appear. CCDC 289915. For crystallographic data in CIF or other
electronic format see DOI: 10.1039/b517117b
procedure to obtain the analytically pure product. This provides a
new route for the flexible synthesis of a new class of heterocycles
with novel physical properties arising from the increased planarity
and electron delocalisation over the entire heterocyclic framework.
The improved planarity can be shown by the DNA binding
affinity, compared to our Dihydro-Imidazo-Phenanthridinium
1
A. T. Balaban, D. C. Oniciu and A. R. Katritzky, Chem. Rev., 2004,
04, 2777–2812.
1
2 A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky, Heterocycles
in Life and Society, John Wiley and Sons Ltd, New York, 1997.
3 E. A. Barnard and W. D. Stein, Adv. Enzymol. Relat. Subj. Biochem.,
17
derivatives (DIPs). The application of this one-pot reaction to
other N-heteroaromatic systems is presently under investigation, as
well as the development of an IP-library, with a particular view to
examine chiral and phase transfer systems. In addition, electro-
chemical and photolysis studies are underway to examine the
possibility of using DIP and IP to generate stable radical species.
This work was supported by the EPSRC and The University of
Glasgow.
1958, 20, 51–110.
M. Boiani and M. Gonzalez, Mini-Rev. Med. Chem., 2005, 5, 409–424.
4
5 Z. Jin, Nat. Prod. Rep., 2005, 22, 196–229.
6 B. H. Lipshutz, Chem. Rev., 1986, 86, 795–819.
7
T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas and K. Toth,
J. Am. Chem. Soc., 2004, 126, 4366–4374.
8
9
W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–1309.
I. Nieto, F. Cervantes-Lee and J. M. Smith, Chem. Commun., 2005,
3811–3813.
1
0 V. Cesar, S. Bellemin-Laponnaz and L. H. Gade, Chem. Soc. Rev.,
004, 33, 619–636.
1 W. A. Herrmann and C. Kocher, Angew. Chem., Int. Ed. Engl., 1997,
6, 2163–2187.
2 D. M. Khramov and C. W. Bielawski, Chem. Commun., 2005,
958–4960.
13 V. J. Majo and P. T. Perumal, J. Org. Chem., 1998, 63, 7136–7142.
4 C. A. Zificsak and D. J. Hlasta, Tetrahedron, 2004, 60, 8991–9016.
5 J. A. Joule, K. Mills and G. F. Smith, Pyridines: Reactions and
2
Notes and references
1
3
{
In an attempt to oxidize DIPs to IPs (Fig. 2), oxidizing agents such as
MnO , KMnO , DDQ, H , H SO and HNO had been tried with a
range of different solvents at different temperatures, without success.
1
2
4
2
O
2
2
4
3
4
21
§
(
Crystallographic data 6: [C15
0.50 6 0.50 6 0.25 mm) was analyzed with a Bruker Nonius Advance
diffractometer equipped with an APEX II CCD detector using Mo-Ka
10 2
H N ], Mr = 218.25 g mol ; colourless rod
1
1
˚
Synthesis, Stanley Thornes, Cheltenham, 1998, ch. 5, pp. 72–119.
16 A. D. C. Parenty, L. V. Smith, A. L. Pickering, D. L. Long and
L. Cronin, J. Org. Chem., 2004, 69, 5934–5946.
1
radiation (l = 0.71073 A) at 100(2) K. Monoclinic, space group P2 (no. 4),
˚
a = 11.4915(11), b = 12.2167(12), c = 16.0434(15) A, b = 108.288(5)u, V =
3
23
21
˚
2138.5(4) A , Z = 8, rcalcd = 1.356 g cm , m(MoKa) = 0.0082 cm
,
1
7 A. D. C. Parenty, L. V. Smith, K. M. Guthrie, D. L. Long, J. Plumb,
F(000) = 912, 11890 reflections measured, 5441 are independent (Rint
0
=
.0299) which were used in all calculations, 613 refined parameters and 1
R. Brown and L. Cronin, J. Med. Chem., 2005, 48, 4504–4506.
18 J. A. Joule, K. Mills and G. F. Smith, 1,3-Azoles: Imidazoles, Thiazoles
and Oxazoles: Reactions and Synthesis, Stanley Thornes, Cheltenham,
Third edn., 1998, ch. 21, pp. 370–408.
19 A. D. C. Parenty, L. V. Smith and L. Cronin, Tetrahedron, 2005, 61,
8410–8418.
restraints, R1 = 0.0628, wR2 = 0.1106 (all data). Structure solution and
refinement were performed by using SHELTXL via APEX2 software
+
21
package. Characterization of 6: [MH] = 219 g mol ; UV-Vis (CHCl
2
3
3
):
55 nm (4.4 6 10 ), 300 nm (1.3 6 10 ), 352 nm (2130), 370 nm (1670) and
86 nm (sh). UV kinetic measurement of the deep blue solution shows
5
5
absorbance at 250 nm, 290 nm, 305 nm (sh), which are all shifted to high
energy. At the same time, two obvious absorption peaks at 565 nm and
20 Y. H. Zhou, W. E. Baker, P. M. Kazmaier and E. Buncel, Can.
J. Chem., 1998, 76, 884–895.
1
196 | Chem. Commun., 2006, 1194–1196
This journal is ß The Royal Society of Chemistry 2006