66
K. Ghosh et al. / Journal of Molecular Structure 785 (2006) 63–67
Such arrangement is different from 1 where ethyl chain and
pyridine amide lie in opposite directions.
The selective combination of hydrogen bond donors and
acceptors of 2 governs the assembly indicating carbamate NH,
a better donor and pyridine amide carbonyl oxygen, a better
˚
acceptor. In the assembly pyridine rings are 4.563 A apart
(along a-axis) and do not show any p-stacking interaction.
The presence of phenyl ring in the carbamate moiety possibly
plays the key role not to allow any inclusion of water in the
network.
In summary, we have thus established that the inclusion of
water is dependent on the nature of the group anchored in the
carbamate moiety in our examples 1 and 2. Pyridine appended
carbamate having normal aliphatic group instead of aliphatic
chain containing pendent aromatic group, prefers water
inclusion that alters the molecular packing of carbamates.
2
Fig. 4. TGA plot showing the weight loss of the compound 1$H O on
increasing the temperature.
DSC experiment showed two endothermic peaks at 1378 and
71 8C. The first endotherm is, therefore, due to dehydration
and second one due to melting.
1
The compound 1$H O is stable hydrate above the boiling point
2
of water and exhibits a unique hydrogen bonding architecture
with cavities. Further exploration in this direction is in progress
in our laboratory.
Such water assisted hydrogen bonded architecture of 1 is
absent in 2 when benzyl group replaces the ethyl group of the
carbamate part. The SCHAKAL plot of 2, which crystallizes in
chiral space group P1, is presented in Fig. 5. The packing mode
Acknowledgements
(
Fig. 6) indicates a parallel arrangement of the molecules with
parallel hydrogen bonds keeping all the pyridines at one end
and phenyls on the other end and surprisingly the achiral
compound 2 crystallizes in an enantiomorphic space group.
Financial support from CSIR, New Delhi, India [Project No.
01(1922)/04/EMR-II] is gratefully acknowledged.
References
[
1] M.R. Bryce, A.J. Moore, M. Hasan, G.J. Ashwell, A.T. Fraser, W. Clegg,
M.B. Hursthouse, A.I. Karaulov, Angew. Chem. Int. Ed. Engl. 29 (1990)
1
450.
[
[
2] A.J. Moore, M.R. Bryce, J. Chem. Soc. Perkin Trans. 1 (1991) 157.
3] A.L. Lehninger, Biochemistry, Worth Publishers, New York, 1976.
Chapter 36.
[
[
[
[
4] G.A. Jeffery, W. Saenger, Hydrogen Bonding in Biological Structures,
Springer, New York, 1997.
5] Y. Yamashita, Y. Kobayashi, T. Miyashi, Angew. Chem. Int. Ed. Engl. 28
(
1989) 1052.
Fig. 5. SCHAKAL plot of 2 with atom numbering scheme.
6] F. Garcia-Tellado, S.J. Geib, S. Goswami, A.D. Hamilton, J. Am. Chem.
Soc. 113 (1991) 9265.
7] S. Hanessian, A. Gomtsyan, M. Simard, S. Roelens, J. Am. Chem. Soc.
1
16 (1994) 4495.
[
[
8] R. Horikoshi, C. Nambu, T. Mochida, New J. Chem. 28 (2004) 26.
9] T. Tanaka, T. Tasaki, Y. Aoyama, J. Am. Chem. Soc. 124 (2002)
1
2453.
[
[
10] Rebek Jr., Angew. Chem. Int. Ed. Engl. 29 (1990) 245.
11] X. Zhao, Y.-L. Cang, F.W. Fowler, J.W. Lauther, J. Am. Chem. Soc. 112
(
1990) 6627.
[
[
[
12] M.W. Hosseini, R. Ruppert, P. Schaeffer, A. de Cian, N. Kyritsaka,
J. Fischer, J. Chem. Soc. Chem. Commun. (1994) 2135.
13] R. Wyler, de Mendoza, Rebek Jr., Angew. Chem. Int. Ed. Engl. 32
(
1993) 1699.
14] (a) B. Sreenivasulu, J.J. Vittal, Angew. Chem. Int. Ed. Engl. 43 (2004)
769;
5
(
b) M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee,
N. Khazanovich, Nature 366 (1993) 324;
(
c) B. Zhao, P. Cheng, X. Chen, W. Shi, D. Liao, S. Yan, Z. Jiang,
J. Am. Chem. Soc. 126 (2004) 3012.
[
15] S.J. Geib, S.C. Hirst, C. Vicent, A.D. Hamilton, J. Chem. Soc. Chem.
Commun. (1991) 1283.
Fig. 6. Packing plot of 2.