Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
Scheme 6 Postulated cyclization reaction mechanism.
DOI: 10.1039/D0CC05672C
OO
7585; (i) Y. Zhao and W. Xia, Chem. Soc. Rev., 2018, 47, 2591-
2608; (j) H. Wang, X. Gao, Z. Lv, T. Abdelilah and A. Lei, Chem.
Rev., 2019, 119, 6769-6787.
4 For selected reviews of visible-light-induced dearomatizatio
reaction, see: (a) A. A. Festa, L. G. Voskressensky and E. V. Van
der Eycken, Chem. Soc. Rev., 2019, 48, 4401-4423; (b) M.
Okumura and D. Sarlah, Eur. J. Org. Chem., 2020, 2020, 1259-
1273; W.-C. Yang, M.-M. Zhang and J.-G. Feng, Adv. Synth.
Catal., 2020, doi: 10.1002/adsc.202000636.
O
N
O
O
O
Br
O
O
[Ir(III)]*
- H+
base
3aa
[Ir(III)]
HN
2a
Oxidative
quenching cycle
OO
O
HN
O
O
[Ir(IV)]
D
5 For selected papers of visible-light-mediated dearomatization
reaction, see: (a) Z. Gu, H. Zhang, P. Xu, Y. Cheng and C. Zhu,
Adv. Synth. Catal., 2015, 357, 3057-3063; (b) Y.-Z. Cheng, K.
Zhou, M. Zhu, L.-A.-C. Li, X. Zhang and S.-L. You, Chem. Eur. J.,
2018, 24, 12519-12523; (c) N. Hu, H. Jung, Y. Zheng, J. Lee, L.
Zhang, Z. Ullah, X. Xie, K. Harms, M.-H. Baik and E. Meggers,
Angew. Chem. Int. Ed., 2018, 57, 6242-6246; (d) Q. Wang, Y. Qu,
Q. Xia, H. Song, H. Song, Y. Liu and Q. Wang, Adv. Synth. Catal.,
2018, 360, 2879-2884; (e) Q. Wang, Y. Qu, Q. Xia, H. Song, H.
Song, Y. Liu and Q. Wang, Chem. Eur. J., 2018, 24, 11283-11287;
(f) Q. Wang, Y. Qu, Y. Liu, H. Song and Q. Wang, Adv. Synth.
Catal., 2019, 361, 4739-4747; (g) Y. Han, Y. Jin, M. Jiang, H. Yang
and H. Fu, Org. Lett., 2019, 21, 1799-1803; (h) Y.-Z. Cheng, Q.-R.
Zhao, X. Zhang and S.-L. You, Angew. Chem. Int. Ed., 2019, 58,
18069-18074; (i) M. Zhu, C. Zheng, X. Zhang and S.-L. You, J. Am.
Chem. Soc., 2019, 141, 2636-2644; (j) C.-L. Dong, X. Ding, L.-Q.
Huang, Y.-H. He and Z. Guan, Org. Lett., 2020, 22, 1076-1080.
6 (a) M. Zhu, K. Zhou, X. Zhang and S.-L. You, Org. Lett., 2018, 20,
4379-4383; (b) H. E. Ho, A. Pagano, J. A. Rossi-Ashton, J. R.
Donald, R. G. Epton, J. C. Churchill, M. J. James, P. O'Brien, R. J.
K. Taylor and W. P. Unsworth, Chem. Sci. , 2020, 11, 1353-1360;
(c) X.-J. Zhou, H.-Y. Liu, Z.-Y. Mo, X.-L. Ma, Y.-Y. Chen, H.-T.
Tang, Y.-M. Pan and Y.-L. Xu, Chem. Asian J., 2020, 15, 1536-
1539.
7 For selected reviews of alkyne reaction, see: (a) R. Chinchilla and
C. Nájera, Chem. Rev., 2014, 114, 1783-1826; (b) R. Salvio, M.
Moliterno and M. Bella, Asian J. Org. Chem., 2014, 3, 340-351; (c)
V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach and A. V.
Vasilyev, Chem. Rev., 2016, 116, 5894-5986.
8 For selected papers of visible-light-mediated alkyne reaction, see:
(a) H. Jiang, Y. Cheng, Y. Zhang and S. Yu, Org. Lett., 2013, 15,
4884-4887; (b) Z.-G. Yuan, Q. Wang, A. Zheng, K. Zhang, L.-Q.
Lu, Z. Tang and W.-J. Xiao, Chem. Commun., 2016, 52, 5128-5131;
(c) H. Zhou, X. Deng, Z. Ma, A. Zhang, Q. Qin, R. X. Tan and S.
Yu, Org. Biomol. Chem. , 2016, 14, 6065-6070; (d) A. Shao, X.
Luo, C.-W. Chiang, M. Gao and A. Lei, Chem. Eur. J., 2017, 23,
17874-17878.
O
O
OO
OO
O
O
O
O
O
HN
HN
HN
1a
C
A
B
In summary, we have disclosed an operationally convenient
visible-light photocatalytic intermolecular dearomatization
cyclization cascade reaction between indole-derived bromides
and alkynes, which cyclization process features a broad substrate
scope and high reaction efficiency. This protocol also presents a
mild and efficient way to furnish a variety of spiroindolenines.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 For selected reviews of spiroindolenines, see: (a) Q. Ding, X. Zhou
and R. Fan, Org. Biomol. Chem. , 2014, 12, 4807-4815; (b) S. P.
Roche, J.-J. Youte Tendoung and B. Tréguier, Tetrahedron, 2015,
71, 3549-3591; (c) M. J. James, P. O'Brien, R. J. K. Taylor and W.
P. Unsworth, Chem. Eur. J., 2016, 22, 2856-2881; (d) J. Bariwal,
L. G. Voskressensky and E. V. Van der Eycken, Chem. Soc. Rev.,
2018, 47, 3831-3848; (e) C. Zheng and S.-L. You, Acc. Chem. Res.,
2020, 53, 974-987.
2 For selected examples synthesize of spiroindolenines, see: (a) K.-J.
Wu, L.-X. Dai and S.-L. You, Org. Lett., 2012, 14, 3772-3775; (b)
C.-X. Zhuo, Y. Zhou, Q. Cheng, L. Huang and S.-L. You, Angew.
Chem. Int. Ed., 2015, 54, 14146-14149; (c) P.-F. Wang, C. Chen,
H. Chen, L.-S. Han, L. Liu, H. Sun, X. Wen and Q.-L. Xu, Adv.
Synth. Catal., 2017, 359, 2339-2344; (d) L. Bai, J. Liu, W. Hu, K.
Li, Y. Wang and X. Luan, Angew. Chem. Int. Ed., 2018, 57, 5151-
5155; (e) J. T. R. Liddon, J. A. Rossi-Ashton, R. J. K. Taylor and
W. P. Unsworth, Org. Lett., 2018, 20, 3349-3353; (f) Y. Zhou, D.
Li, S. Tang, H. Sun, J. Huang and Q. Zhu, Org. Biomol. Chem. ,
2018, 16, 2039-2042; (g) P. Ranjan, G. M. Ojeda, U. K. Sharma
and E. V. Van der Eycken, Chem. Eur. J., 2019, 25, 2442-2446; (h)
Y.-B. Shen, L.-F. Li, M.-Y. Xiao, J.-M. Yang, Q. Liu and J. Xiao,
J. Org. Chem., 2019, 84, 13935-13947; (i) W.-T. Wu, L. Ding, L.
Zhang and S.-L. You, Org. Lett., 2020, 22, 1233-1238; (j) C. Li, L.
Xue, J. Zhou, Y. Zhao, G. Han, J. Hou, Y. Song and Y. Liu, Org.
Lett., 2020, 22, 3291-3296.
9 (a) B. Hu, Y. Li, W. Dong, K. Ren, X. Xie, J. Wan and Z. Zhang,
Chem. Commun., 2016, 52, 3709-3712; (b) W. Dong, Y. Yuan, X.
Gao, M. Keranmu, W. Li, X. Xie and Z. Zhang, Org. Lett., 2018,
20, 5762-5765; (c) W. Dong, Y. Yuan, X. Gao, M. Keranmu, W.
Li, X. Xie and Z. Zhang, J. Org. Chem., 2019, 84, 1461-1467; (d)
W. Dong, Y. Yuan, X. Xie and Z. Zhang, Org. Lett., 2020, 22, 528-
532.
3 For selected reviews of visible-light photoredox catalysis, see: (a) J.
Xuan and W.-J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828-6838;
(b) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev.,
2013, 113, 5322-5363; (c) X. Lang, J. Zhao and X. Chen, Chem.
Soc. Rev., 2016, 45, 3026-3038; (d) D. Ravelli, S. Protti and M.
Fagnoni, Chem. Rev., 2016, 116, 9850-9913; (e) N. A. Romero and
D. A. Nicewicz, Chem. Rev., 2016, 116, 10075-10166; (f) K. L.
Skubi, T. R. Blum and T. P. Yoon, Chem. Rev., 2016, 116, 10035-
10074; (g) F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins