Full Paper
K. J. Brewer, Coord. Chem. Rev. 2013, 257, 1660–1675; d) K. Yamamoto,
A. Call, K. Sakai, Chem. Eur. J. 2018, 24, 16620–16629; e) J. F. Lefebvre, J.
Schindler, P. Traber, Y. Zhang, S. Kupfer, S. Gräfe, I. Baussanne, M.
Demeunynck, J. M. Mouesca, S. Gambarelli, V. Artero, B. Dietzek, M. Chav-
arot-Kerlidou, Chem. Sci. 2018, 9, 4152–4159; f) L. Zedler, S. Kupfer, I. R.
de Moraes, M. Wächtler, R. Beckert, M. Schmitt, J. Popp, S. Rau, B. Dietzek,
Chem. Eur. J. 2014, 20, 3793–3799; g) D. Polyansky, D. Cabelli, J. T. Muck-
erman, E. Fujita, T. Koizumi, T. Fukushima, T. Wada, K. Tanaka, Angew.
Chem. Int. Ed. 2007, 46, 4169–4172; Angew. Chem. 2007, 119, 4247; h)
M. Skaisgirski, X. Guo, O. S. Wenger, Inorg. Chem. 2017, 56, 2432–2439;
i) B. Matt, J. Fize, J. Moussa, H. Amouri, A. Pereira, V. Artero, G. Izzet, A.
Proust, Energy Environ. Sci. 2013, 6, 1504–1508; j) A. G. Bonn, O. S.
Wenger, Chimia 2015, 69, 17–21; k) A. G. Bonn, O. S. Wenger, Phys. Chem.
Chem. Phys. 2015, 17, 24001–24010; l) J. N. Schrauben, R. Hayoun, C. N.
Valdez, M. Braten, L. Fridley, J. M. Mayer, Science 2012, 336, 1298–1301.
mass spectra were measured on a Bruker Esquire 3000 plus ion-
trap ESI-MS. High resolution ESI mass spectra were recorded by
Dr. Michael Pfeffer on a Bruker maXis 4G QTOF ESI spectrometer.
Elemental analysis was performed by Ms Sylvie Mittelheisser on a
Vario Micro Cube from Elementar.
UV/Vis absorption spectra were measured on a Varian Cary-5000
UV/Vis-NIR spectrometer. Cyclic voltammograms were recorded
with a Versastat3–200 potentiostat from Princeton Applied Re-
search. A three-electrode setup containing a glassy carbon working
electrode, a silver wire counter electrode and an SCE reference elec-
trode was used to measure the cyclic voltammograms. For spectro-
electrochemical measurements, the Cary-5000 UV/Vis-NIR spec-
trometer and the Versastat3–200 potentiostat were used in combi-
nation. Here, a platinum net was used as working electrode, a plati-
num wire served as counter electrode and an SCE as reference elec-
trode.
[3]
[4]
A. Pannwitz, O. S. Wenger, Chem. Commun. 2019, 55, 4004–4014.
a) M. P. O′Neil, M. P. Niemczyk, W. A. Svec, D. Gosztola, G. L. Gaines, M. R.
Wasielewski, Science 1992, 257, 63–65; b) H. Imahori, M. Hasegawa, S.
Taniguchi, M. Aoki, T. Okada, Y. Sakata, Chem. Lett. 1998, 27, 721–722.
Nanosecond transient absorption spectra were recorded with an
LP920-KS spectrometer from Edinburgh Instruments equipped with
an Andor iCCD camera. Excitation at 532 nm occurred using pulsed
second harmonic radiation with a Nd:YAG laser (Quantel Brilliant b,
ca. 10 ns pulse width). Two-color two-pulse flash photolysis was
performed on the same setup using an additional Quantel Brilliant
laser equipped with an OPO from Opotek. Synchronization of the
two lasers and the detection system was achieved as described
previously.[26b] The output powers of both lasers were varied by the
Q-switch delays and measured with a pyroelectric detector from
Ophir. The beams of both lasers were sent through beam expanders
(GBE02-A or GBE05-A, both from Thorlabs) to bring their diameters
to either ∼1.4 cm (blue laser; maximum laser intensity per area,
13 mJ/cm2) or ∼1.2 cm (green laser; maximum laser intensity per
area, 70 mJ/cm2). The beam expansion ensured completely homo-
geneous laser excitation in the whole detection volume (ca.
1.2 cm3).
[5]
[6]
a) S. Karlsson, J. Boixel, Y. Pellegrin, E. Blart, H. C. Becker, F. Odobel, L.
Hammarström, J. Am. Chem. Soc. 2010, 132, 17977–17979; b) S. Karlsson,
J. Boixel, Y. Pellegrin, E. Blart, H. C. Becker, F. Odobel, L. Hammarström,
Faraday Discuss. 2012, 155, 233–252.
a) M. Orazietti, M. Kuss-Petermann, P. Hamm, O. S. Wenger, Angew. Chem.
Int. Ed. 2016, 55, 9407–9410; Angew. Chem. 2016, 128, 9553; b) S. Men-
des Marinho, M. H. Ha-Thi, V. T. Pham, A. Quaranta, T. Pino, C. Lefumeux,
T. Chamaille, W. Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2017, 56,
15936–15940; Angew. Chem. 2017, 129, 16152; c) T. T. Tran, M. H. Ha-Thi,
T. Pino, A. Quaranta, C. Lefumeux, W. Leibl, A. Aukauloo, J. Phys. Chem.
Lett. 2018, 9, 1086–1091; d) M. Kuss-Petermann, O. S. Wenger, Chem. Eur.
J. 2017, 23, 10808–10814.
M. Kuss-Petermann, M. Orazietti, M. Neuburger, P. Hamm, O. S. Wenger,
J. Am. Chem. Soc. 2017, 139, 5225–5232.
a) J. Nomrowski, O. S. Wenger, J. Am. Chem. Soc. 2018, 140, 5343–5346;
b) J. Nomrowski, X. Guo, O. S. Wenger, Chem. Eur. J. 2018, 24, 14084–
14087.
[7]
[8]
[9]
a) N. Dupont, Y. F. Ran, H. P. Jia, J. Grilj, J. Ding, S. X. Liu, S. Decurtins, A.
Hauser, Inorg. Chem. 2011, 50, 3295–3303; b) C. Goze, C. Leiggener, S. X.
Liu, L. Sanguinet, E. Levillain, A. Hauser, S. Decurtins, ChemPhysChem
2007, 8, 1504–1512; c) C. Goze, N. Dupont, E. Beitler, C. Leiggener, H. Jia,
P. Monbaron, S. X. Liu, A. Neels, A. Hauser, S. Decurtins, Inorg. Chem.
2008, 47, 11010–11017; d) C. Leiggener, N. Dupont, S. X. Liu, C. Goze, S.
Decurtins, E. Breitler, A. Hauser, Chimia 2007, 61, 621–625; e) Y. S. Luo,
M. Wächtler, K. Barthelmes, A. Winter, U. S. Schubert, B. Dietzek, Phys.
Chem. Chem. Phys. 2018, 20, 11740–11748.
a) D. Hanss, O. S. Wenger, Eur. J. Inorg. Chem. 2009, 3778–3790; b) D.
Hanss, O. S. Wenger, Inorg. Chem. 2009, 48, 671–680; c) R. J. Kumar, S.
Karlsson, D. Streich, A. R. Jensen, M. Jäger, H. C. Becker, J. Bergquist, O.
Johansson, L. Hammarström, Chem. Eur. J. 2010, 16, 2830–2842; d) Y. S.
Luo, J. H. Tran, M. Wächtler, M. Schulz, K. Barthelmes, A. Winter, S. Rau,
U. S. Schubert, B. Dietzek, Chem. Commun. 2019, 55, 2273–2276; e) Y. S.
Luo, K. Barthelmes, M. Wächtler, A. Winter, U. S. Schubert, B. Dietzek, J.
Phys. Chem. C 2017, 121, 9220–9229; f) Y. S. Luo, K. Barthelmes, M. Wäch-
tler, A. Winter, U. S. Schubert, B. Dietzek, Chem. Eur. J. 2017, 23, 4917–
4922.
Emission-corrected picosecond transient absorption spectra were
measured using a TRASS instrument from Hamamatsu and a mode-
locked picosecond Nd:YVO4/YAG laser (Ekspla model PL2251B-20-
SH/TH/FH with PRETRIG option) as an excitation source. Briefly, the
fundamental 1064 nm output was split into two pulse beams: one
(pulse energy = 16 mJ) used to generate white light through excita-
tion of a Xenon breakdown lamp, and the other directed through a
second harmonic generation crystal to generate the 532 nm (1 mJ)
excitation pulse. Samples were measured as de-aerated solutions
with optical densities of 0.7 at the excitation wavelength.
[10]
Acknowledgments
Financial support by the Swiss National Science Foundation
through grants number 200021_178760 and 206021_157687
(to O. S. W.) and by the German National Academy of Sciences
(to C. K., postdoctoral fellowship LPDS 2017-11) is gratefully ac-
knowledged.
[11]
a) J. Santos, B. M. Illescas, N. Martín, J. Adrio, J. C. Carretero, R. Viruela, E.
Orti, F. Spanig, D. M. Guldi, Chem. Eur. J. 2011, 17, 2957–2964; b) N.
Martín, L. Sánchez, D. M. Guldi, Chem. Commun. 2000, 113–114; c) Y.
Takano, M. A. Herranz, N. Martín, G. D. Rojas, D. M. Guldi, I. E. Kareev,
S. H. Strauss, O. V. Boltalina, T. Tsuchiya, T. Akasaka, Chem. Eur. J. 2010,
16, 5343–5353.
Keywords: Electron transfer · Time-resolved spectroscopy ·
Donor-acceptor systems · Charge transfer · Photochemistry
[12]
[13]
D. M. Guldi, L. Sanchez, N. Martín, J. Phys. Chem. B 2001, 105, 7139–7144.
a) D. F. Perepichka, M. R. Bryce, I. F. Perepichka, S. B. Lyubchik, C. A.
Christensen, N. Godbert, A. S. Batsanov, E. Levillain, E. J. L. McInnes, J. P.
Zhao, J. Am. Chem. Soc. 2002, 124, 14227–14238; b) S. Wenger, P. A.
Bouit, Q. L. Chen, J. Teuscher, D. Di Censo, R. Humphry-Baker, J. E. Moser,
J. L. Delgado, N. Martin, S. M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc.
2010, 132, 5164–5169; c) Y. Yamashita, Y. Kobayashi, T. Miyashi, Angew.
Chem. Int. Ed. Engl. 1989, 28, 1052–1053; Angew. Chem. 1989, 101, 1090.
[1] a) L. Hammarström, Acc. Chem. Res. 2015, 48, 840–850; b) Y. Pellegrin, F.
Odobel, Coord. Chem. Rev. 2011, 255, 2578–2593.
[2] a) R. Konduri, H. W. Ye, F. M. MacDonnell, S. Serroni, S. Campagna, K.
Rajeshwar, Angew. Chem. Int. Ed. 2002, 41, 3185–3187; Angew. Chem.
2002, 114, 3317; b) R. Konduri, N. R. de Tacconi, K. Rajeshwar, F. M. Mac-
Donnell, J. Am. Chem. Soc. 2004, 126, 11621–11629; c) G. F. Manbeck,
Eur. J. Inorg. Chem. 0000, 0–0
6
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim