1222
S.-H. Yang, V. Caprio
LETTER
(11) DeShong, P.; Leginus, J. M. J. Am. Chem. Soc. 1983, 105,
1686.
(12) Koviach, J. L.; Forsyth, C. J. Tetrahedron Lett. 1999, 40,
8529.
(13) (a) Arimoto, H.; Asano, S.; Uemura, D. Tetrahedron Lett.
1999, 40, 3583. (b) Matsumura, Y.; Aoyagi, S.; Kibayashi,
C. Org. Lett. 2003, 5, 3249. (c) Hayakawa, I.; Arimoto, H.;
Uemura, D. Heterocycles 2003, 59, 441. (d) Hayakawa, I.;
Arimoto, H.; Uemura, D. Chem. Commun. 2004, 1222.
(e) Matsumara, Y.; Aoyagi, S.; Kibayashi, C. Org. Lett.
2004, 6, 965.
(14) Zhang, H.-L.; Zhao, G.; Ding, Y.; Wu, B. J. Org. Chem.
2005, 70, 4954.
(15) Ali, S. A. Tetrahedron Lett. 1993, 34, 5325.
(16) Yamada, K.; Kishikawa, K.; Yamamoto, M. J. Org. Chem.
1987, 52, 2327.
(17) Taniguchi, M.; Koga, K.; Yamada, S. Chem. Pharm. Bull.
1972, 20, 1438.
(18) Andreana, P. R.; McLellan, P. S.; Chen, Y.; Wang, R. G.
Org. Lett. 2002, 4, 3875.
References and Notes
(1) Chou, T.; Otani, Y.; Shikano, M.; Yazawa, K.; Uemura, D.
Tetrahedron Lett. 1996, 37, 3871.
(2) (a) Kuramoto, M.; Tong, C.; Yamada, K.; Chiba, T.;
Hayashi, Y.; Uemura, D. Tetrahedron Lett. 1996, 37, 3867.
(b) Arimoto, A.; Hayakawa, I.; Uemura, D. Tetrahedron
Lett. 1998, 39, 861.
(3) (a) Nevalainen, T. J.; Haapamäki, M. M.; Grönroos, J. M.
Biochim. Biophys. Acta 2000, 1488, 83. (b) Reid, R. C.
Curr. Med. Chem. 2005, 12, 3011. (c) Gomez-Paloma, L.;
Monti, M. C.; Terracciano, S.; Casapullo, A.; Riccio, R.
Curr. Org. Chem. 2005, 9, 1419.
(4) For a review of synthetic approaches to pinnaic acid and
halichlorine developed up to 2005, see: Clive, D. L. J.; Yu,
M.; Wang, J.; Yeh, V. S. C.; Kang, S. Chem. Rev. 2005, 105,
4483.
(5) Synthetic approaches not covered in ref. 4: (a)Roulland,E.;
Chiaroni, A.; Husson, H.-P. Tetrahedron Lett. 2005, 46,
4065. (b) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7,
5733. (c) Sinclair, A.; Arini, L. G.; Rejzek, M.; Szeto, P.;
Stockman, R. A. Synlett 2006, 2321.
(6) For reviews covering cycloadditions of nitrones, see:
(a) Tufariello, J. J. Acc. Chem. Res. 1979, 12, 396.
(b) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
(c) Fredrickson, M. Tetrahedron 1997, 53, 403. (d) De
March, P.; Figueredo, M.; Font, J. Heterocycles 1999, 50,
1213. (e) Koumbis, A. E.; Gallos, J. E. Curr. Org. Chem.
2003, 7, 585.
(7) For reviews covering nucleophilic additions to nitrones,
see: (a) Lombardo, M.; Trombini, C. Synthesis 2000, 759.
(b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synlett
2000, 442. (c) Lombardo, M.; Trombini, C. Curr. Org.
Chem. 2002, 6, 695.
(19) (a) Diaz-Ortiz, A.; Diez-Barra, E.; de la Hoz, A.; Moreno,
A.; Gómez-Escalonilla, M. J.; Loupy, A. Heterocycles 1996,
43, 1021. (b) Cheng, Q.; Zhang, W.; Tagami, Y.; Oritani, T.
J. Chem. Soc., Perkin Trans. 1 2001, 452. (c) Enderlin, G.;
Taillefumier, C.; Dideirjean, C.; Chapleur, Y. Tetrahedron:
Asymmetry 2005, 16, 2459.
(20) A 10 mL microwave reaction vessel was charged with ester
7 (0.62 g, 3.27 mmol), nitrone 5 (0.30 g, 1.63 mmol) and
toluene (5 mL). The vial was sealed with a cap containing a
silicon septum, loaded into the cavity of a focussed micro-
wave oven (Discover® CEM, 250 W) and heated for 1 h at
165 °C. The reaction mixture was cooled to r.t., concentrated
and purified by column chromatography on silica gel using
EtOAc–hexane (3:7) as eluent to give isoxazolidine 17 as
two diastereomers as colourless oils (0.48 g, 80%; dr = 1:1;
diastereomers unassigned).
(8) Gössinger, E.; Imhof, R.; Wehrli, H. Helv. Chim. Acta 1975,
58, 96.
(9) LeBel, N. A.; Post, M. E.; Hwang, D. J. Org. Chem. 1979,
44, 1819.
Diastereomer A: IR (neat): 3443, 2958, 1728 cm–1. 1H
NMR (300 MHz, CDCl3): d = 1.25 (d, 3 H, J = 7.1 Hz),
1.30–1.63 (m, 8 H), 1.64–1.93 (m, 3 H), 1.94–2.08 (m, 2 H),
2.09–2.12 (m, 2 H), 2.66 (dq, 1 H, J = 7.9, 7.1 Hz), 3.45 (d,
1 H, J = 5.8 Hz), 3.56–3.65 (m, 2 H), 4.12 (td, 1 H, J = 7.9,
(10) A solution of MCPBA (70%, 5.70 g, 33.0 mmol) in CH2Cl2
(130 mL) was added to a solution of isoxazolidine 8 (3.80 g,
22.7 mmol) in CH2Cl2 at 0 °C over 7 h. After the addition
was complete the mixture was warmed to r.t. and stirred for
a further 20 h. Then, sat. aq Na2S2O3 (60 mL) and sat.
NaHCO3 (60 mL) were added and the mixture extracted with
CH2Cl2 (3 × 30 mL). The combined organic extracts were
dried over anhyd MgSO4, concentrated and purified by
column chromatography on silica gel using CH2Cl2–MeOH
(9.5:0.5) as eluent to give nitrone 5 as a yellow solid (3.72 g,
89%); mp 70–73 °C. IR (neat): 3410, 2961, 1642 cm–1. 1H
NMR (300 MHz, CDCl3): d = 1.30–2.10 (m, 10 H), 2.45–
2.52 (m, 2 H), 2.70–2.85 (m, 1 H), 3.65–3.80 (m, 2 H), 7.34
(t, 1 H, J = 4.0 Hz). 13C NMR (75 MHz, CDCl3): d = 15.4,
24.0, 26.3, 28.3, 37.0, 38.5, 52.7, 61.1, 76.5, 142.0. HRMS
(EI): m/z calcd for [C10H17NO2]+: 183.1253; found:
183.1259.
5.7 Hz), 5.11 (d, 2 H, J = 7.4 Hz), 7.30–7.38 (m, 5 H). 13
C
NMR (75 MHz, CDCl3): d = 14.5, 19.2, 21.2, 26.4, 27.8,
30.2, 38.2, 40.0, 45.3, 45.4, 57.8, 65.4, 66.1, 69.2, 76.0,
128.0, 128.1, 128.5, 135.9, 174.3. HRMS (EI): m/z = calcd
for [C22H31NO4]+: 373.2253; found: 373.2253.
Diastereomer B: IR (neat): 3448, 2958, 2931, 1727 cm–1. 1H
NMR (300 MHz, CDCl3): d = 1.11 (d, 3 H, J = 7.0 Hz),
1.23–1.68 (m, 10 H), 1.69–1.96 (m, 2 H), 1.97–2.08 (m, 2
H), 2.09–2.15 (m, 2 H), 2.70 (dq, 1 H, J = 8.5, 7.1 Hz), 3.45
(d, 1 H, J = 6.3 Hz), 3.54–3.64 (m, 2 H), 4.20 (td, 1 H,
J = 8.5, 6.0 Hz), 5.14 (d, 2 H, J = 4.9 Hz), 7.29–7.36 (m, 5
H). 13C NMR (75 MHz, CDCl3): d = 12.7, 19.2, 21.1, 26.4,
27.7, 29.6, 38.0, 39.1, 45.2, 45.4, 57.9, 65.4, 66.0, 69.1, 76.3,
127.9, 128.0, 128.4, 136.1, 174.5. HRMS (EI): m/z calcd for
[C22H31NO4]+: 373.2253; found: 373.2256.
Synlett 2007, No. 8, 1219–1222 © Thieme Stuttgart · New York