Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
spreading area was increased by 1.4 times. Meanwhile, in case
of cotton leaf, the spreading area of BEN droplet remained
unchanged upto 30 s, but rapid and maximum spreading area
was attained with complex droplets (Figure S24b, S17). After
the addition of AP5A, the BEN droplets were spreading and the
spreading area was increased by 1.3 times (Figure S18). The
above studies have showed that addition of AP5A could
improve the spreading of BEN on different hydrophobic plant
surface. It is also necessary to study the influence of AP5A over
the activity of BEN. The inhibitory effect of BEN + AP5A complex
on AtHPPD was slightly enhanced compared with BEN (Figure
S19). Moreover, in living tests revealed that the spraying of BEN
and BEN + AP5A on the grass, causes yellowing of both the
groups within 24 h of administration and death of both the
DOI: 10.1039/D0CC02187C
Interests.
Notes and references
1
Z. P. Zhu, Y. Tian, Y. P. Chen, Z. Gu, S. T. Wang and L. Jiang,
Angew. Chem. Int. Ed. Enql. 2017, 56, 5720-5724.
B. Elena, G. P. Alfredo, R. J. M, P. Rosa, Colloid Interface Sci.
2005, 3, 247-260.
2
3
4
5
6
7
R. Blossey, Nat. Mater. 2003, 2, 301-306.
S. Jung, M. K. Tiwari, N. V. Doan, Nat. Commun. 2012, 3, 615.
G. B. Gao, Angew. Chem. Int. Ed. 2015, 54, 2245-2250.
S. Zhang, J. Am. Chem. Soc. 2007, 129, 4876-4877.
E. H. J. Kim, Colloids and Surfaces B: Biointerfaces, 2002, 26,
197-212.
8
9
Y. Shen, J. Tao, S. Chen, Appl. Phys. Lett. 2015, 107, 111604.
Y. H. Liu, L. Moevius, X. P. Xu, Nat. Phys. 2014, 10, 515-519.
groups were observed in the time period of 120 h (Figure S20,
42
S21).
This studies indicates that there was no significant
10 V. Bergeron, D. Bonn, J. Y. Martin, Nature. 2000, 405, 772-775.
11 M. Massinon, F. Lebeau, Appl. Asp. Appl. Biol. 2012, 14, 261-
268.
change in the pesticidal property of BEN even after
complexation with AP5A.
12 R. Wang, Y. Sun, Angew. Chem. 2017, 129, 5378-5382.
13 M. Rein, Fluid Dyn. Res. 1996, 306, 145-165.
14 W. B. Hu, Z. Wang, Chem. Eur. J. 2019, 25, 2189-2194.
15 D. B. Smith, Soc. Agric. Eng. 2000, 43, 255-262.
16 X. C. Li, Nat. Commun. 2018, 9, 40.
17 X. Hou, W. Guo & L. Jiang, Chem. Soc. Rev. 2011, 40, 2385-
2401.
18 R.F. Sowade, Nat. Commun. 2017, 8, 512-518.
19 R. E. Gaskin, K. D. Steele & W. A. Forster, New Zealand Plant
Prot. 2005, 58, 179.
20 M. L. Yu, J. W. Yao, J. Liang, RSC Adv. 2017, 7, 11271-11280.
21 E. K. Kim, Journal of Colloid and Interface Science. 2012, 368,
599-602.
22 M. Damak, Nat Commun. 2016, 7, 12560.
23 G. C. Yu, J. Am. Chem. Soc. 2012, 134, 8711-8717.
24 D. Bartolo, A. Boudaoud, Phys. Rev. Lett. 2007, 99, 174502.
25 H. Y. Lin, X. Chen, J. N. Chen, Research, 2019, 2602414.
26 X. X. Liu, Angew. Chem. Int. Ed. 2015, 54, 12772-12776.
27 M. Oishi, World Journal of Mechanics. 2019, 9, 233-243.
28 F. Zhang, Chem. Sci. 2016, 7, 3227-3233.
Fig. 4 A) TEM imaging of BEN and the complexes aqueous
solution (10-6 mol/L); B) The surface tension of BEN and BEN +
AP5A droplets at different concentrations; C) Molecular
dynamics simulation of the distribution of BEN and complex
droplets.
29 M. Song, Z. Liu, Y. Ma, Z. Dong, NPG Asia Materials. 2017, 9,
e415.
30 J. Lin, M. N. Zhu, X. Wu, Physicochem. Eng. Aspects. 2016, 511,
190-200.
31 S. Wang, Z. Q. Xu, T. T. Wang, T. X. Xiao, X. Y. Hu, Y. Z. Shen, L.
Y. Wang, Nat. Commun. 2018, 9, 1737-1746.
32 C. Y. Han, D. Z. Zhao & S. Y. Dong, Chem. Commun. 2018, 54,
13099-13101.
33 T. Ogoshi, T. A. Yamagishi, Chem. Rev. 2016, 116, 7937-8002.
34 A. Bhadani, M. Tani, T., Endo, K. Sakai, M. Abe & H. Sakai, Phys.
Chem. Chem. Phys. 2015, 17, 19474-19483.
35 F. Taherian, Langmuir, 2013, 29, 1457-1465.
36 Y. Sun, J. K. Ma, F. Zhang, F. Zhu, Y. X. Mei, L. Liu, D. M.Tian &
H. B. Li, Nat. Commun. 2017, 8, 260-266.
In conclusion, the use of AP5A selective high-efficiency
recognition, through dynamic self-assembly, the spreading of
herbicide BEN on the bionic superhydrophobic surface and
plant leaf was improved significantly with AP5A and the
herbicidal activity was not affected. The observed
superspreading behavior was caused by the tensile viscosity of
the bilayer produced by host-guest interaction and hydrogen
bonding interaction. Here supramolecular interaction provides
a way to improve the biological activity and utilization efficiency
of pesticides.
37 T. H. Huang, X. C. Li, Y. H. Wang, J. Optmat. 2013, 7, 1373-
1377.
This work was financially supported by the National Key
Research
and
Development
Program
of
China
38 L. Zhao, J. T. Cheng, Scientificreports, 2017, 7, 10881-10893.
39 F. Zhang, J. K. Ma, Y. Sun, Chem. Sci. 2016, 7, 3227-3233.
40 Y. Chen, Chin. Chem. Lett. 2012, 23, 509-511.
41 J. K. Ma, H. W. Yan, J. X. Quan, J. H. Bi, D. M. Tian, H.B. Li, ACS
Appl. Mater. Interfaces. 2019, 1, 1665-1671.
42 D. W. Wang, J. Agric. Food Chem. 2014, 62, 11786-11796.
(2018YFD0200102), the National Natural Science Foundation of
China (21772055, 21837001), the Nature Science Foundation of
Hubei Province (2018CFB534), the 111 Project (B17019) and
Self-determined research funds of CCNU from the colleges’
basic research and operation of MOE.
Conflicts of interest
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins