Inorganic Chemistry
Communication
(4) (a) Praneeth, V. K.; Nather, C.; Peters, G.; Lehnert, N.
Spectroscopic properties and electronic structure of five- and six-
coordinate iron(II) porphyrin NO complexes: effect of the axial N-
donor ligand. Inorg. Chem. 2006, 45, 2795−2811. (b) Goodrich, L.;
Paulat, F.; Praneeth, V.; Lehnert, N. Electronic structure of heme-
nitrosyls and its significance for nitric oxide reactivity, sensing,
transport, and toxicity in biological systems. Inorg. Chem. 2010, 49,
6293−6316. (c) Lehnert, N.; Sage, N.; Silvernail, N.; Scheidt, W. R.;
Alp, E. E.; Sturhahn, W.; Zhao, J. Oriented single-crystal nuclear
resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quanti-
tative assessment of the trans effect of NO. Inorg. Chem. 2010, 49,
nitrosyl and nitro complexes of meso-tetratolylporphyrinato cobalt
with trans S-donor ligands. Inorg. Chem. 2010, 49, 7793−7798.
(14) Enemark, J. H.; Feltham, R.D. Principles of structure, bonding,
and reactivity for metal nitrosyl complexes. Coord. Chem. Rev. 1974,
13, 339−406.
(15) (a) Yoshimura, T. Nitrosyl(protoporphyrin IX dimethyl
ester)iron(II) complexes with nitrogenous bases. The basicity
dependence of the NO stretching frequency. Bull. Chem. Soc. Jpn.
1983, 56, 2527−2528. (b) Maxwell, J. C.; Caughey, W. S. An infrared
study of nitric oxide bonding to heme B and hemoglobin A. Evidence
for inositol hexaphosphate induced cleavage of proximal histidine to
iron bonds. Biochemistry 1976, 15, 388−396. (c) Rovira, C.; Kunc, K.;
Hutter, J.; Ballone, P.; Parrinello, M. Equilibrium geometries and
electronic structure of iron−porphyrin complexes: A density functional
study. J. Phys. Chem. A 1997, 101, 8914−8925. (d) Spiro, T. G.;
Zgierski, M. Z.; Kozlovki, P. M. Stereoelectronic factors in CO, NO
and O2 binding to heme from vibrational spectroscopy and DFT
analysis. Coord. Chem. Rev. 2001, 219−221, 923−936. (e) Berto, T. C.;
Praneeth, V. K. K.; Goodrich, L. E.; Lehnert, N. Iron-porphyrin NO-
complexes with covalently attached N-donor ligands: Formation of
stable six-coordinate species in solution. J. Am. Chem. Soc. 2009, 131,
17116−17126.
(16) (a) Choi, I. K.; Ryan, M. D. The electrochemistry of iron
porphyrin nitrosyls in the presence of pyridines and amines. Inorg.
Chim. Acta 1988, 153, 25−30. (b) Bohle, D. S.; Hung, C.-H. Ligand-
promoted rapid nitric oxide dissociation from ferrous porphyrin
nitrosyls. J. Am. Chem. Soc. 1995, 117, 9584−9585. (c) Yoshimura, T.;
Ozaki, T. Electronic spectra for nitrosyl(protoporphyrin IX dimethyl
ester)iron(II) and its complexes with nitrogenous bases as model
systems for nitrosylhemoproteins. Arch. Biochem. Biophys. 1984, 229,
126−135.
́
7197−7215. (d) Heinecke, J. L.; Khin, C.; Pereira, J. C. M.; Suarez, S.
A.; Iretskii, A. V.; Doctorovich, F.; Ford, P. C. Nitrite Reduction
Mediated by Heme Models. Routes to NO and HNO? J. Am. Chem.
Soc. 2013, 135, 4007−4017. (e) Hunt, A. P.; Lehnert, N. Heme-
Nitrosyls: Electronic Structure Implications for Function in Biology.
Acc. Chem. Res. 2015, 48, 2117−2125.
(5) Yoshimura, T. Electron paramagnetic resonance study of the
interaction of nitrosyl(protoporphyrin IX dimethyl ester)iron(II) with
sulfur- and oxygen-donor ligands. Inorg. Chim. Acta 1982, 57, 99−105.
(6) Praneeth, V. K.; Haupt, E.; Lehnert, N. Thiolate coordination to
Fe(II)−porphyrin NO centers. J. Inorg. Biochem. 2005, 99, 940−948.
(7) Martirosyan, G. G.; Kurtikyan, T. S.; Azizyan, A. S.; Iretskii, A. V.;
Ford, P. C. Weak coordination of neutral S- and O-donor proximal
ligands to a ferrous porphyrin nitrosyl. Characterization of 6-
coordinate complexes at low T. J. Inorg. Biochem. 2013, 121, 129−133.
(8) (a) Simonneaux, G. Phosphines as structural and functional
probes of hemoproteins. Coord. Chem. Rev. 1997, 165, 447−474.
(b) Sun, S.; Sono, M.; Dawson, J. H. Mono- and bis-phosphine-ligated
H93G myoglobin: Spectral models for ferrous-phosphine and ferrous-
CO cytochrome P450. J. Inorg. Biochem. 2013, 127, 238−245.
(c) Sono, M.; Dawson, J. H.; Hager, L. P. Phosphine binding as a
structural probe of the chloroperoxidase active site: spectroscopic
evidence for endogenous thiolate ligation to the heme iron. Inorg.
Chem. 1985, 24, 4339−4343.
(9) Legrand, N.; Bondon, A.; Simonneaux, G. Possible role of the
iron coordination sphere in hemoprotein electron transfer self-
exchange: 1H NMR study of the cytochrome c−PMe3 complex.
Inorg. Chem. 1996, 35, 1627−1631.
(10) (a) Sodano, P.; Simonneaux, G.; Toupet, L. Tertiary phosphine
complexes of iron porphyrins: synthesis, molecular stereochemistry,
and crystal structure of bis(dimethylphenylphosphine)-(meso-
5,10,15,20-tetraphenylporphyrinato)iron(II). J. Chem. Soc., Dalton
Trans. 1988, 2615−2620. (b) Mink, L. M.; Polam, J. R.;
Christensen, K. A.; Bruck, M. A.; Walker, F. A. Electronic effects in
transition metal porphyrins. 8. The effect of porphyrins substituents,
axial ligands, ″steric crowding″, solvent, and temperature on the 57Fe
chemical shifts of a series of model heme complexes. J. Am. Chem. Soc.
1995, 117, 9329−9339.
(17) Nakamoto, K. Infrared and Raman Spectra of Inorganic and
Coordination Compounds, 3rd ed.; Wiley: New York, 1978.
(18) Martirosyan, G. G.; Azizyan, A. S.; Kurtikyan, T. S.; Ford, P. C.
In situ FT-IR and UV-vis spectroscopy of the low-temperature NO
disproportionation mediated by solid state manganese(II) porphyri-
nates. Inorg. Chem. 2006, 45, 4079−4087.
(19) Longhi, R.; Ragsdale, R. O.; Drago, R. S. Reactions of
Nitrogen(II) Oxide with Miscellaneous Lewis Bases. Inorg. Chem.
1962, 1, 768−770.
́
(20) Lim, M. D.; Lorkovic, I. M.; Ford, P. C. Kinetics of the oxidation
of triphenylphosphine by nitric oxide. Inorg. Chem. 2002, 41, 1026−
1028.
(21) Ohya, T.; Morohoshi, H.; Sato, M. Preparation and character-
ization of low-spin iron(II) porphyrin complexes with bis(phosphine)
or bis(phosphite) axial ligands. Inorg. Chem. 1984, 23, 1303−1305.
(11) Simonneaux, G.; Bondon, A.; Brunel, C.; Sodano, P. Direct
observation of intermediate ligation states of hemoglobin. J. Am. Chem.
Soc. 1988, 110, 7637−7640.
(12) (a) Stynes, D. V.; Fletcher, D.; Chen, X. Equilibria for
phosphine ligation to ferrous protoporphyrin IX dimethyl ester and
related systems in toluene. Inorg. Chem. 1986, 25, 3483−3488.
(b) Belani, R. M.; James, B. R.; Dolphin, D.; Rettig, S. T. Catalytic
decarbonylation of aldehydes using iron(II) porphyrin complexes, and
the crystal structure of (5,10,15,20-tetraphenylporphinato)bis(tri-n-
butylphosphine)iron(II). Can. J. Chem. 1988, 66, 2072−2078.
́
(13) (a) Kurtikyan, T. S.; Martirosyan, G. G.; Lorkovic, I. M.; Ford,
P. C. Comparative IR study of nitric oxide reactions with sublimed
layers of iron(II)- and ruthenium(II)-meso-tetraphenylporphyrinates. J.
Am. Chem. Soc. 2002, 124, 10124−10129. (b) Kurtikyan, T. S.;
Markaryan, E. R.; Mardyukov, A. N.; Goodwin, J. A. Low-temperature
spectral observation of the first six-coordinate nitrosyl complexes of
cobalt(II) meso-tetratolylporphyrin with trans nitrogen base ligands.
Inorg. Chem. 2007, 46, 1526−1528. (c) Kurtikyan, T. S.; Gulyan, G.
M.; Dalaloyan, A. M.; Kidd, B. E.; Goodwin, J. A. Six-coordinate
D
Inorg. Chem. XXXX, XXX, XXX−XXX