Inorganic Chemistry
ARTICLE
When the starting materials reacted at 220 °C for 10 min,
(14) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M.
Nature 2001, 409, 66.
CuPd nanoparticles with an average diameter of 16 nm
(
15) Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.;
Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
16) (a) Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Science
008, 319, 1229. (b) Jiao, L. Y.; Zhang, L.; Ding, L.; Liu, J. E.; Dai, H. J.
Nano Res. 2010, 3, 387.
17) Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai,
G. A.; Alivisatos, A. P. Science 2004, 304, 711.
18) (a) Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N. J. Am. Chem.
(
Figure 12c) could be synthesized. Figure 12d shows the
TEM image of CuPd nanoparticles with an average diameter of
0 nm obtained when the reaction was performed at 220 °C
for 15 min.
(
2
2
(
’
SUMMARY
(
In conclusion, an effective ODA synthetic system for the
Soc. 2005, 127, 7332. (b) Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel,
B. A.; Xia, Y. N. J. Am. Chem. Soc. 2008, 130, 8900. (c) Zeng, J.; Zheng,
Y. Q.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q. A.; Zhu, Y. M.; Xia, Y. N.
J. Am. Chem. Soc. 2010, 132, 8552. (d) Lim, B.; Kobayashi, H.; Camargo,
P. H. C.; Allard, L. F.; Liu, J. Y.; Xia, Y. N. Nano Res. 2010, 3, 180.
(19) (a) Huo, Z. Y.;Tsung,C.K.;Huang,W.Y.;Zhang,X.F.;Yang,P.D.
Nano Lett. 2008, 8, 2041. (b) Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai,
G. A.; Yang, P. D. Nat. Mater. 2007, 6, 692. (c) Liang, W. J.; Rabin, O.;
Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Nano Res. 2009, 2, 394.
preparation of various nanocrystals including metals, mixed
metal oxides, metal/metal oxide heterostructured nanocrystals,
intermetallics, and alloys has been successfully developed in the
present study. Nontoxic and inexpensive metal inorganic salts
were employed as reagents. The composition, size, and morphol-
ogy of nanocrystals can be easily controlled by adjusting the
experimental parameters including the molar ratio of two pre-
cursors, the concentration of reactants, the reaction temperature,
and time. This facile and general strategy offers the possibility of
low-cost and large-scale production of various nanocrystals
which can find potential applications in important fields such
as environmental and industrial catalysis.
(
(
20) Kuo, C. H.; Huang, M. H. J. Am. Chem. Soc. 2008, 130, 12815.
21) (a) Yin, M.; O’Brien, S. J. Am. Chem. Soc. 2003, 125, 10180.
(
b) Yin, M.; Wu, C. K.; Lou, Y. B.; Burda, C.; Koberstein, J. T.; Zhu,
Y. M.; O’Brien, S. J. Am. Chem. Soc. 2005, 127, 9506.
22) (a) Chaubey, G. S.; Barcena, C.; Poudyal, N.; Rong, C. B.; Gao,
(
J. M.; Sun, S. H.; Liu, J. P. J. Am. Chem. Soc. 2007, 129, 7214. (b) Wang, C.;
Peng, S.; Lacroix, L. M.; Sun, S. H. Nano Res. 2009, 2, 380. (c) Mazumder,
V.; Chi, M. F.; More, K. L.; Sun, S. H. J. Am. Chem. Soc. 2010, 132, 7848.
(23) Hu, M. J.; Lin, B.; Yu, S. H. Nano Res. 2008, 1, 303.
’
ASSOCIATED CONTENT
S
Supporting Information. Detailed analytical data, XRD
b
(
(
24) Wang, L. L.; Johnson, D. D. J. Am. Chem. Soc. 2009, 131, 14023.
25) (a) Huang, X. Q.; Zheng, N. F. J. Am. Chem. Soc. 2009,
patterns, and TEM images. This material is available free of
charge via the Internet at http://pubs.acs.org.
131, 4602. (b) Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng,
N. F. Nano Res. 2009, 2, 12. (c) Huang, X. Q.; Tang, S. H.; Zhang, H. H.;
Zhou, Z. Y.; Zheng, N. F. J. Am. Chem. Soc. 2009, 131, 13916.
’
AUTHOR INFORMATION
(
(
26) Gu, X. H.; Xu, L. Q.; Tian, F.; Ding, Y. Nano Res. 2009, 2, 386.
27) (a) Maksimuk, S.; Yang, S.; Peng, Z.; Yang, H. J. Am. Chem. Soc.
Corresponding Author
*E-mail: ydli@tsinghua.edu.cn.
2
(
007, 129, 8684. (b) Peng, Z. M.; Yang, H. Nano Res. 2009, 2, 406.
c) Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.;
Yang, H. J. Am. Chem. Soc. 2010, 132, 4984.
28) Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. J. Am. Chem. Soc.
’
ACKNOWLEDGMENT
(
This work was supported by the State Key Project of Fundamental
2009, 131, 17036.
(29) (a) Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Nature 2005,
Research for Nanoscience and Nanotechnology (2011CB932401,
011CBA00500), NSFC (20921001, 21051001), and China Post-
doctoral Science Foundation (20100470335).
4
1
1
37, 121. (b) Wang, D. S.; Xie, T.; Li, Y. D. Nano Res. 2009, 2, 30.
30) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc.
993, 115, 8706.
31) Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc.
2
(
(
’
REFERENCES
999, 121, 11595.
(
1) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
(32) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343.
(33) Sun, S. H.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204.
(34) Hyeon, T.; Lee, S. S.; Park, J.; Chang, Y.; Na, H. B. J. Am. Chem.
Soc. 2001, 123, 12798.
(35) Doneg ꢀa , C. M.; Liljeroth, P.; Vanmaekelbergh, D. Small 2005,
1, 1152.
(
(
2) Alivisatos, A. P. Science 1996, 271, 933.
3) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater.
Sci. 2000, 30, 545.
(4) El-Sayed, M. A. Acc. Chem. Res. 2004, 37, 326–333.
(
5) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001,
2
3
93, 1289.
(36) Zhang, Y. W.; Sun, X.; Si, R.; You, L. P.; Yan, C. H. J. Am. Chem.
Soc. 2005, 127, 3260.
(37) Niederberger, M.; Garnweitner, G. Chem.—Eur. J. 2006, 12, 7282.
(38) Zhao, F.; Yuan, M.; Zhang, W.; Gao, S. J. Am. Chem. Soc. 2006,
128, 11758.
(39) (a) Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc.
2008, 130, 4016. (b) Wang, D. S.; Xie, T.; Peng, Q.; Zhang, S. Y.; Chen,
J.; Li, Y. D. Chem.—Eur. J. 2008, 14, 2507. (c) Wang, D. S.; Li, Y. D.
J. Am. Chem. Soc. 2010, 132, 6280. (d) Wang, D. S.; Peng, Q.; Li, Y. D.
Nano Res. 2010, 3, 574.
(40) Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.;
Dahmen, U.; Alivisatos, A. P. Science 2009, 324, 1309.
(41) Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570.
(6) Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Nature 1992,
60, 444.
(
7) Xie, Y.; Qian, Y. T.; Wang, W. Z.; Zhang, S. Y.; Zhang, Y. H.
Science 1996, 272, 1926.
8) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Nature 1992, 359, 710.
9) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999,
02, 276.
10) Yang, P.; Deng, T.; Zhao, D.; Feng, P.; Pine, D.; Chmelka, B. F.;
Whitesides, G. M.; Stucky, G. D. Science 1998, 282, 2244.
11) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science
000, 287, 1989.
12) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.;
Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.
13) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.
(
(
4
(
(
2
(
(
5
202
dx.doi.org/10.1021/ic200485v |Inorg. Chem. 2011, 50, 5196–5202