Macromolecules, Vol. 35, No. 14, 2002
Communications to the Editor 5351
F.; Dong, Y. ACS Symp. Ser. 2000, 760, 146. (c) Lam, J . W.
Y.; Luo, J .; Peng, H.; Xie, Z.; Xu, K.; Dong, Y.; Cheng, L.;
Qiu, C.; Kwok, H. S.; Tang, B. Z. Chin. J . Polym. Sci. 2000,
19, 585. (d) Mi Y.; Tang, B. Z. Polym. News 2001, 26, 170.
worsened, indicating that the nonlinear optical property
can be manipulated by molecular engineering. This is
further verified by the data shown in Table 1: the
limiting power of the polymers varied in a large range
with their molecular structure. Among the polymers,
6 worked best. It limited the laser pulses at a low
threshold (126 mJ /cm2) and suppressed the optical
signals to a great extent (0.11; Table 1, no. 4), which
are respectively 2.8- and 2.5-fold better than those
achievable by C60 under comparable conditions.
In summary, in this study, we successfully synthe-
sized soluble functional hyperbranched polyarylenes in
high yields by alkyne polycyclotrimerizations initiated
by CpCo(CO)2-hν,5 thanks to the functionality-toler-
ance of the robust Co catalyst. The polyarylenes emitted
UV light and limited intense optical pulses. The UV
emission is of technological value and may be utilized
in the fabrication of full-color light-emitting devices.16
The excellent optical limiting properties, coupled with
their thermal stability and processing advantages, make
the hyperbranched polyarylenes promising candidate
materials for high-tech applications.
(4) Xu, K.; Peng, H.; Tang, B. Z. Polym. Prepr. 2001, 42 (1),
555.
(5) While Co2(CO)8 was used in the synthesis of benzene-based1g
and -cored2c dendrimers, we were unaware of any previous
attempt in utilizing CpCo(CO)2 as a catalyst to initiate
alkyne polycyclotrimerization before our early work reported
in ref 3a.
(6) Hyperbranched polyphenylenes were prepared by Pd(0)-
and Ni(II)-catalyzed aryl-aryl coupling reactions at high
temperatures.2b Our approach is, however, conceptually
different and offers a new synthetic route to hyperbranched
polyarylenes. The simplicity of our methodology and the
richness of acetylene chemistry7 facilitate systematic varia-
tions in the structures and properties of the polyarylenes.
(7) (a) Modern Acetylene Chemistry; Stang, P. J ., Diederich, F.,
Eds.; VCH: New York, 1995. (b) Brandsma, L.; Verkruijsse,
H. D. Synthesis of Acetylenes, Allenes and Cumulenes;
Elsevier: Amsterdam, 1981.
(8) Lam, J . W. Y.; Kong, X.; Dong, Y.; Cheuk, K. K. L.; Xu, K.;
Tang, B. Z. Macromolecules 2000, 33, 5027.
(9) GPC often underestimates molecular weights of branched
polymers;2b the difference between the relative and absolute
molecular weights can be as big as ∼40 times: Muchtar,
Z.; Schappacher, M.; Deffieux, A. Macromolecules 2001, 34,
7595. The true molecular weights of our hyperbranched
polymers thus could be much higher than those given in
Table 1.
(10) (a) Tang, B. Z.; Xu, H.; Lam, J . W. Y.; Lee, P.; Xu, K.; Sun,
Q.; Cheuk, K. K. L. Chem. Mater. 2000, 12, 1446. (b) Huang,
Y. M.; Ge, W.; Lam, J . W. Y.; Tang, B. Z. Appl. Phys. Lett.
1999, 75, 4094. (c) Kong, X.; Tang, B. Z. Chem. Mater. 1998,
10, 3352.
Ack n ow led gm en t. This work was supported by the
Hong Kong Research Grants Council (HKUST 6187/99P
and 6121/01P) and the Area of Excellence Scheme of
the University Grants Committee of Hong Kong (AoE/
P-10/01-1-A).
Su p p or tin g In for m a tion Ava ila ble: Synthetic proce-
dures and structural characterization data. This material is
(11) Huang, Y. M.; Ge, W.; Lam, J . W. Y.; Tang, B. Z. Appl. Phys.
Lett. 2001, 78, 1652.
Refer en ces a n d Notes
(12) Masuda, T.; Tang, B. Z.; Higashimura, T.; Yamaoka, H.
Macromolecules 1985, 18, 2369.
(1) (a) Schluter, A. D.; Wegner, G. Acta Polym. 1993, 44, 59.
(b) Tour, J . M. Adv. Mater. 1994, 6, 190. (c) J ohnen, N. A.;
Kim, H. K.; Ober, C. K. ACS Symp. Ser. 1994, 579, 298. (d)
Kumar, U.; Neenan, T. X. ACS Symp. Ser. 1995, 614, 518.
(e) Kim, Y. H. J . Polym. Sci., Polym. Chem. Ed. 1998, 36,
1685. (f) Scherf, U. Top. Curr. Chem. 1999, 201, 163. (g)
Watson, M. D.; Fechtenkotter, A.; Mullen, K. Chem. Rev.
2001, 101, 1267.
(2) (a) Goldschmiedt, G. Monatsh. Chem. 1886, 7, 40. (b) Kim,
Y.; Webster, O. W. Macromolecules 1992, 25, 5561. (c) Hecht,
S.; Frechet, J . M. J . J . Am. Chem. Soc. 1999, 121, 4084. (d)
Wiesler, U. M.; Berresheim, A. J .; Morgenroth, F.; Lieser,
G.; Mullen, K. Macromolecules 2001, 34, 187.
(13) (a) Tutt, L. W.; Kost, A. Nature (London) 1992, 356,
225. (b) Sun, Y. P.; Riggs, J . E. Int. Rev. Phys. Chem. 1999,
18, 43.
(14) Tang, B. Z.; Xu, H. Macromolecules 1999, 32, 2569.
(15) (a) Tang, B. Z.; Leung, S. M.; Peng, H.; Yu, N.-T.; Su, K. C.
Macromolecules 1997, 30, 2848. (b) Peng, H.; Lam, J . W.
Y.; Leung, F. S. M.; Poon, T. W. H.; Wu, A. X.; Yu, N.-T.;
Tang, B. Z. J . Sol-Gel Sci. Technol. 2001, 22, 205.
(16) Lam, J . W. Y.; Dong, Y.; Cheuk, K. K. L.; Luo, J .; Xie, Z.;
Kwok, H. S.; Mo, Z.; Tang, B. Z. Macromolecules 2002, 35,
1229.
(3) (a) Xu, K.; Tang, B. Z. Chin. J . Polym. Sci. 1999, 17, 397.
(b) Tang, B. Z.; Xu, K.; Sun, Q.; Lee, P. P. S.; Peng, H.; Salhi,
MA020180S