Organic Letters
Letter
Pd(0) to the C−I bond to form aryl−Pd(II) intermediate A,
which undergoes an intramolecular Heck reaction and a C−H
bond activation sequence to generate palladacycle C.
Subsequently, the oxidative addition of palladacycle C to the
C−Br bond of o-bromobenzoic acid affords Pd(IV)
intermediate D, which provides seven-membered palladacycle
E by a reductive elimination and decarboxylation sequence.
Finally, the reductive elimination of palladacycle E furnishes
the desired product 3aa or 5aa and regenerates Pd(0), which
continues to participate in the next cycle.
In conclusion, we have developed a novel palladium-
catalyzed intermolecular cascade reaction for the synthesis of
fused indolo[2,1-a]isoquinoline derivatives in which three C−
C bonds are formed via an intramolecular Heck reaction, C−H
activation, and decarboxylation sequence. The reaction
employs readily available reagents, including alkene-tethered
aryl halides and o-bromobenzoic acids, to construct interesting
fused hexacyclic scaffolds in moderate to excellent yield with a
broad substrate scope and good functional group tolerance.
Importantly, 8-bromo-1-naphthoic acid as a coupling partner
can be applicable to this approach, thus affording
dihydrocyclohepta[de]naphthalene-fused indolo[2,1-a]-
isoquinolines. This protocol opens up a new perspective to
access fused indolo[2,1-a]isoquinoline derivatives.
REFERENCES
■
(
1) (a) Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L.-K.; Tsotinis, T.;
Panoussopoulou, M.; Calogeropoulou, T.; Teh, M.-K.; Sugden, D. J.
Med. Chem. 2000, 43, 1050. (b) Goldbrunner, M.; Loidl, G.; Polossek,
T.; Mannschreck, A.; von Angerer, E. V. J. Med. Chem. 1997, 40, 3524.
(c) Ambros, R.; Schneider, M. R.; Von Angerer, S. J. Med. Chem.
1990, 33, 153. (d) Ambros, R.; Von Angerer, S.; Wiegrebe, W. Arch.
Pharm. (Weinheim, Ger.) 1988, 321, 743. (e) Meyers, A. I.; Sielecki, T.
M.; Crans, D. C.; Marshman, R. W.; Nguyen, T. H. J. Am. Chem. Soc.
1
992, 114, 8483. (f) Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Chem. -
Asian J. 2018, 13, 2316. (g) Kim, D. S.; Lee, S. H.; Park, J. H.; Moon,
S. Y.; Ju, J. U.; Byun, J. H.; Park, B. R.; Oh, D. H.; Lee, B. S.; Kim, D.
H.; Choi, D. H.; Lee, G. M. Korean Patent 2013126399, 2013.
(
2) For selected examples, see: (a) Martín-García, I.; Alonso, F.
Chem. - Eur. J. 2018, 24, 18857. (b) Alam, K.; Hong, S. W.; Oh, K. H.;
Park, J. K. Angew. Chem., Int. Ed. 2017, 56, 13387. (c) Yuan, X.; Wu,
X.; Dong, S.; Wu, G.; Ye, J. Org. Biomol. Chem. 2016, 14, 7447.
(d) Rusch, F.; Unkel, L.-N.; Alpers, D.; Hoffmann, F.; Brasholz, M.
Chem. - Eur. J. 2015, 21, 8336. (e) Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.;
Mao, H.; Wang, X.; Lv, X. J. Org. Chem. 2014, 79, 9000. (f) Wei, W.-
T.; Dong, X.-J.; Nie, S.-Z.; Chen, Y.-Y.; Zhang, X.-J.; Yan, M. Org. Lett.
013, 15, 6018. (g) Mahoney, S. J.; Fillion, E. Chem. - Eur. J. 2012, 18,
8. (h) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
010, 12, 2068. (i) Li, Y.; Zhu, J.; Xie, H.; Li, S.; Peng, D.; Li, Z.; Wu,
Y.; Gong, Y. Chem. Commun. 2012, 48, 3136. (j) Nakamura, I.; Sato,
Y.; Terada, M. J. Am. Chem. Soc. 2009, 131, 4198. (k) Jafarpour, F.;
Lautens, M. Org. Lett. 2006, 8, 3601. (l) Bressy, C.; Alberico, D.;
Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148. (m) Orito, K.;
Uchiito, S.; Satoh, Y.; Tatsuzawa, T.; Harada, R.; Tokuda, M. Org.
Lett. 2000, 2, 307.
2
6
2
ASSOCIATED CONTENT
Supporting Information
■
*
S
(3) (a) Fuentes, N.; Kong, W. Q.; Fernandez-Sanchez, L.; Merino,
́ ́
E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964. (b) Su, X.; Huang,
H.; Hong, W.; Cui, J.; Yu, M.; Li, Y. Chem. Commun. 2017, 53, 13324.
(
c) Huang, H.; Li, Y. J. Org. Chem. 2017, 82, 4449. (d) Wei, Y.-L.;
Chen, J.-Q.; Sun, B.; Xu, P.-F. Chem. Commun. 2019, 55, 5922.
4) (a) Domino Reactions: Concepts for Efficient Organic Synthesis;
Experimental procedures, full characterization of prod-
ucts, and nuclear magnetic resonance (NMR) spectra
(
Tietze, L. F., Ed.; Wiley-VCH: Weinheim, Germany, 2014. (b) Tietze,
L. F., Brasche, G., Gericke, K. M. Domino Reactions in Organic
Synthesis, 1st ed.; Wiley-VCH: Weinheim, Germany, 2006. (c) Tietze,
L. F. Chem. Rev. 1996, 96, 115.
(5) For selected reviews, see: (a) He, J.; Wasa, M.; Chan, K. L.;
Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754. (b) Huang, Z.; Lim,
H. N.; Mo, F.; Young, M. C.; Dong, G. Chem. Soc. Rev. 2015, 44,
CCDC 1941547 contains the supplementary crystallographic
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
7764. (c) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45,
936. (d) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res.
2012, 45, 788.
(
6) For selected reviews, see: (a) Kim, D.-S.; Park, W.-J.; Jun, C.-H.
AUTHOR INFORMATION
̈
fert, A.; Werz, D. B. Chem. - Eur. J.
■
*
*
Chem. Rev. 2017, 117, 8977. (b) Du
016, 22, 16718. (c) Della Ca’, N.; Fontana, M.; Motti, E.; Catellani,
M. Acc. Chem. Res. 2016, 49, 1389. (d) Ye, J.; Lautens, M. Nat. Chem.
015, 7, 863. (e) Martins, A.; Mariampillai, B.; Lautens, M. Top. Curr.
2
2
Chem. 2009, 292, 1.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (21572051, 21602057, 21901071, and
1971061), the Scientific Research Fund of Hunan Provincial
Education Department (18A002), and the Science and
Technology Planning Project of Hunan Province
Schoenebeck, F.; Lautens, M. Nat. Chem. 2017, 9, 361. (c) Piou,
T.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2012, 51, 11561.
■
(
d) Piou, T.; Neuville, L.; Zhu, J. Org. Lett. 2012, 14, 3760. (e) Kim,
K. H.; Lee, H. S.; Kim, S. H.; Kim, S. H.; Kim, J. N. Chem. - Eur. J.
010, 16, 2375. (f) Satyanarayana, G.; Maichle-Mossmer, C.; Maier,
2
2
̈
M. E. Chem. Commun. 2009, 1571. (g) Ruck, R. T.; Huffman, M. A.;
Kim, M. M.; Shevlin, M.; Kandur, W. V.; Davies, I. W. Angew. Chem.,
Int. Ed. 2008, 47, 4711. (h) Brown, D.; Grigg, K.; Sridharan, V.;
(
2018TP1017).
D
Org. Lett. XXXX, XXX, XXX−XXX