ACS Catalysis
Page 4 of 5
(9) For reviews on metal salen-based supramolecules: (a) Wezenberg,
The Supporting Information is available free of charge on the
ACS Publications website.
S. J.; Kleij, A. W. Angew. Chem., Int. Ed. 2008, 47, 2354-2364. (b) Akine,
S.; Nabeshima, T. Dalton Trans. 2009, 10395-10408. (c) Wiester, M. J.;
Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114-137.
(10) For a review on the asymmetric Henry reaction: Palomo, C.;
Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442-5444.
(11) (a) Tanaka, Y.; Katagiri, H.; Furusho, Y.; Yashima, E. Angew.
Chem., Int. Ed. 2005, 44, 3867-3870. (b) Ikeda, M.; Tanaka, Y.; Ha-
segawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128,
6806-6807. (c) Furusho, Y.; Yashima, E. Macromol. Rapid Commun.
2011, 32, 136-146. (d) Yamada, H.; Wu, Z.-Q.; Furusho, Y.; Yashima,
E. J. Am. Chem. Soc. 2012, 134, 9506-9520.
1
2
3
4
5
6
7
8
Experimental procedures, characterizations of dimer strands, and
additional spectroscopic data (PDF)
AUTHOR INFORMATION
Corresponding Author
*E-mail: yashima@apchem.nagoya-u.ac.jp
9
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) See the Supporting Information.
The authors declare no competing financial interest.
(13) The chiral Co(II)-salen-linked 3a·3c showed a relatively weak
CD in the longer wavelength region when compared to that of the
Ni(II)-salen-linked 2a·2c (Figure 2). The model Co(II)-salen complex
ACKNOWLEDGMENT
6
Co also exhibited a weaker CD than that of 6Ni (Figure S16). Therefore,
This work was supported in part by JSPS KAKENHI (Grant-in-
Aid for Scientific Research (S), no. 25220804 (E.Y.) and Grant-
in-Aid for Young Scientists (B) and 26810048 (D.T.)). J.T. ex-
presses his thanks for the JSPS Research Fellowship for Young
Scientists (no. 8886).
the difference in the CD intensities observed for 2a·2c and 3a·3c may
be originated from the metal species coordinating to the salen unit.
14) Chiral metal-salen complexes developed by Jacobsen et al. ef-
ficiently catalyze the enantioselective epoxide hydrolysis, in which
two metal centers are involved in the transition state. (a) Tokunaga,
M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 277,
936-938. (b) Jacobsen, E. N. Acc. Chem. Res. 2000, 33, 421-431.
(15) The 3a·3c complex exhibited as an intense CD in a mixture of
CH2Cl2 and CH3NO2 (3/2, v/v) in the presence of 1 equiv. of diiso-
propylethylamine (DIPEA) as that in CHCl3 at 25 °C even at a very
low concentration (0.50 mM) (Figure S12), indicating that the double-
helical structure was retained during the Henry reaction. In addition,
the amidinium–carboxylate salt bridges are stable in the presence of a
Co(II)-salen complex (Figure S13).
REFERENCES
(1) For recent reviews: (a) Hill, D. J.; Mio, M. J.; Prince, R. B.;
Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-4011. (b)
Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013-4038. (c)
Foldamers: Structure, Properties, and Applications; Hecht, S. M., Huc,
I., Eds.; Wiley-VCH: Weinheim, Germany, 2007. (d) De Greef, T. F.
A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma,
R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687-5754. (e) Yashima,
E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109,
6102-6211. (f) Schwartz, E.; Koepf, M.; Kitto, H. J.; Nolte, R. J. M.;
Rowan, A. E. Polym. Chem. 2011, 2, 33-47. (g) Suginome, M.;
Yamamoto, T.; Nagata, Y.; Yamada, T.; Akai, Y. Pure Appl. Chem.
2012, 84, 1759-1769. (h) Nakano, T. Chem. Rec. 2014, 14, 369-385.
(i) Shen, J.; Okamoto, Y. Chem. Rev. 2016, 116, 1094-1138. (j) Freire,
F.; Quiñoá, E.; Riguera, R. Chem. Rev. 2016, 116, 1242-1271.
(2) Nielsen, P. E. Acc. Chem. Res. 1999, 32, 624-630.
(16) Conversion of 7 was quite high (entry 2), despite the low yield
of 8. This is probably due to side reactions during the Henry reaction.
See: Luzzio, F. A. Tetrahedron 2001, 57, 915-945.
(17) We first anticipated that the observed enhancement of the enanti-
oselectivity for 3c could be ascribed to its self-associated homo-double
helix formation with an excess handedness as observed for an analogous
carboxylic acid dimer (CC) (Figure S15b).18 However, the enantioselectivi-
ty of 6Co increased from 56 to 77% ee (10% yield) in the presence of the
carboxylic acid monomer (C) being comparable to that catalyzed by 3c
(74% ee), suggesting the complex formation of the Co(II)-salen unit with
the carboxy groups of 3c19 which may contribute to enhancing the enanti-
oselectivity during the Henry reaction, although such a homo-double helix-
like aggregate formation of 3c could not be completely excluded because
the CD spectral pattern and intensity of 3c were significantly different from
those of 6Co and its complex with C (Figure S17). Diffusion-ordered 1H
NMR spectroscopy (DOSY) measurements for 2c support such an aggre-
gate formation (Figure S15a). The enantioselectivity of 3c decreased (55%
ee) when the reaction was carried out in THF (entry 3), which will hamper
the complex formation between the Co(II)-salen unit and the carboxy
groups as well as the self-associated duplex formation of 3c, leading to
dissociation into single strands, therefore, its CD signal significantly de-
creased in THF (Figure S14).
(18) Makiguchi, W.; Kobayashi, S.; Furusho, Y.; Yashima, E. An-
gew. Chem., Int. Ed. 2013, 52, 5275-5279.
(19) Vinck, E.; Carter, E.; Murphy, D. M.; Van Doorslaer, S. Inorg.
Chem. 2012, 51, 8014-8024.
(20) Achiral metal-salen-based asymmetric catalysts have been de-
veloped by Katsuki, List, and Takata et al., in which one of the enan-
tiomeric conformations was induced by chiral additives or chiral sub-
stituents. (a) Hashihayata, T.; Ito, Y.; Katsuki, T. Synlett 1996, 1079-
1081. (b) Furusho, Y.; Maeda, T.; Takeuchi, T.; Makino, N.; Takata,
T. Chem. Lett. 2001, 1020-1021. (c) Merten, C.; Pollok, C. H.; Liao,
S.; List, B. Angew. Chem., Int. Ed. 2015, 54, 8841-8845.
(3) For reviews: (a) Lehn, J.-M. Supramolecular Chemistry: Con-
cepts and Perspectives; VCH: Weinheim, Germany, 1995. (b) Piguet,
C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev. 1997, 97, 2005-
2062. (c) Albrecht, M. Chem. Rev. 2001, 101, 3457-3497.
(4) For leading examples and reviews: (a) Berl, V.; Huc, I.; Khoury, R.
G.; Krische, M. J.; Lehn, J. M. Nature 2000, 407, 720-723. (b) Zhan, C.
L.; Léger, J.-M.; Huc, I. Angew. Chem., Int. Ed. 2006, 45, 4625-4628. (c)
Guichard, G.; Huc, I. Chem. Commun. 2011, 47, 5933-5941. (d) Gan, Q.;
Ferrand, Y.; Chandramouli, N.; Kauffmann, B.; Aube, C.; Dubreuil, D.;
Huc, I. J. Am. Chem. Soc. 2012, 134, 15656-15659. (e) Zhang, D. W.;
Zhao, X.; Hou, J. L.; Li, Z.-T. Chem. Rev. 2012, 112, 5271-5316.
(5) (a) Hasegawa, T.; Furusho, Y.; Katagiri, H.; Yashima, E. Angew.
Chem., Int. Ed. 2007, 46, 5885-5888. (b) Yeung, C.-T.; Yeung, H.-L.; Tsang,
C.-S.; Wong, W.-Y.; Kwong, H.-L. Chem. Commun. 2007, 5203-5205. (c)
Sham, K.-C.; Yeung, H.-L.; Yiu, S.-M.; Lau, T.-C.; Kwong, H.-L.
Dalton Trans. 2010, 39, 9469-9471.
(6) For reviews: (a) Boersma, A. J.; Megens, R. P.; Feringa, B. L.;
Roelfes, G. Chem. Soc. Rev. 2010, 39, 2083-2092. (b) Drienovska, I.;
Roelfes, G. Isr. J. Chem. 2015, 55, 21-31.
(7) For reviews on supramolecular asymmetric catalysts: (a) Raynal,
M.; Ballester, P.; Vidal-Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc.
Rev. 2014, 43, 1660-1733. (b) Raynal, M.; Ballester, P.; Vidal-Ferran, A.;
van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1734-1787.
(8) (a) Park, J.; Lang, K.; Abboud, K. A.; Hong, S. J. Am. Chem.
Soc. 2008, 130, 16484-16485. (b) Lang, K.; Park, J.; Hong, S. Angew.
Chem., Int. Ed. 2012, 51, 1620-1624.
ACS Paragon Plus Environment