ACS Medicinal Chemistry Letters
Page 6 of 7
(5) Qian, K. C.; Wang, L.; Hickey, E. R.; Studts, J.; Barringer,
thiazolidine-2,4-diones as potent and selective inhibitors of the
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
K.; Peng, C.; Kronkaitis, A.; Li, J.; White, A.; Mische, S.; Farmer, B.
Structural basis of constitutive activity and a unique nucleotide
binding mode of human Pim-1 kinase. J. Biol. Chem. 2005, 280,
PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg. Med. Chem.
Lett. 2012, 22, 4599–4604.
(22) Keeton, E. K.; McEachern, K.; Dillman, K. S.; Palakurthi,
S.; Cao, Y.; Grondine, M. R.; Kaur, S.; Wang, S.; Chen, Y.; Wu, A.;
Shen, M.; Gibbons, F. D.; Lamb, M. L.; Zheng, X.; Stone, R. M.;
DeAngelo, D. J.; Platanias, L. C.; Dakin, L. A.; Chen, H.; Lyne, P.
D.; Huszar, D. AZD1208, a potent and selective pan-Pim kinase
inhibitor, demonstrates efficacy in preclinical models of acute
myeloid leukemia. Blood 2014, 123, 905–913.
(23) Burger, M. T.; Nishiguchi, G.; Han, W.; Lan, J.; Simmons,
R.; Atallah, G.; Ding, Y.; Tamez, V.; Zhang, Y.; Mathur, M.; Mul-
ler, K.; Bellamacina, C.; Lindvall, M. K.; Zang, R.; Huh, K.; Feucht,
P.; Zavorotinskaya, T.; Dai, Y.; Basham, S.; Chan, J.; Ginn, E.;
Aycinena, A.; Holash, J.; Castillo, J.; Langowski, J. L.; Wang, Y.;
Chen, M. Y.; Lambert, A.; Fritsch, C.; Kauffmann, A.; Pfister, E.;
Vanasse, K. G.; Garcia, P. D. Identification of N-(4-((1R,3S,5S)-3-
Amino-5-methylcyclohexyl)pyridine-3-yl)-6-(2,6-
difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and
selective proviral insertion site of Moloney murine leukemia
(PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematologi-
cal malignancies. J. Med. Chem. 2015, 58, 8373–8386.
(24) Nakano, H.; Saito, N.; Lorien, P.; Tada, Y.; Abe, M.; Tsu-
ganezawa, K.; Yokoyama, S.; Tanaka, A.; Kojima, H.; Okabe, T.;
Nagano, T. Rational evolution of a novel type of potent and se-
lective proviral integration site in Moloney murine leukemia
virus kinase 1 (PIM1) inhibitor from a screening-hit compound. J.
Med. Chem. 2012, 55, 5151–5164.
6130–6137.
(6) Kumar, A.; Mandiyan, V.; Suzuki, Y.; Zhang, C.; Rice, J.;
Tsai, J.; Artis, D. R.; Ibrahim, P.; Bremer, R. Crystal structures of
proto-oncogene kinase Pim1: a target of aberrant somatic hy-
permutations in diffuse large cell lymphoma. J. Mol. Biol. 2005,
348, 183–193.
(7) Jacobs, M. D.; Black, J.; Futer, O.; Swenson, L.; Hare, B.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Fleming, M.; Saxena, K. Pim-1 ligand–bound structures reveal the
mechanism of serine/threonine kinase inhibition by LY294002. J.
Biol. Chem. 2005, 280, 13728–13734.
(8) Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.;
Schwaller, J. PIM serine/threonine kinases in the pathogenesis
and therapy of hematologic malignancies and solid cancers.
Haematologica 2010, 95, 1004–1015.
(9) Magnuson, N. S.; Wang, Z.; Ding, Z.; Reeves, R. Why target
PIM1 for cancer diagnosis and treatment? Future Oncol. 2010, 6,
1461–1478.
(10) Nawijn, M.C.; Alendar, A.; Berns, A. For better or for
worse: the role of Pim oncogenes in tumorigenesis. Nat. Rev.
Cancer 2011, 11, 23–34.
(11) Garcia, P. D.; Langowski, J. L.; Wang, Y.; Chen, M.; Castillo,
J.; Fanton, C.; Ison, M.; Zavorotinskaya, T.; Dai, Y.; Lu, J.; Niu, X.-
H.; Basham, S.; Chan, J.; Yu, J.; Doyle, M.; Feucht, P.; Warne, R.;
Narberes, J.; Tsang, T.; Fritsch, C.; Kauffmann, A.; Pfister, E.;
Drueckes, P.; Trappe, J.; Wilson, C.; Han, W.; Lan, J.; Nishiguchi,
G.; Lindvall, M.; Bellamacina, C.; Aycinena, J. A.; Zang, R.; Ho-
lash, J.; Burger, M. T. Pan-PIM kinase inhibition provides a novel
therapy for treating hematologic cancers. Clin. Cancer Res. 2014,
(25) Leeson, P. D.; Springthorpe, B. The influence of drug-like
concepts on decision-making in medicinal chemistry. Nature Rev.
Drug Discovery 2007, 6, 881–890.
(26) Parker, L. J.; Watanabe, H.; Tsuganezawa, K.; Tomabechi,
Y.; Handa, N.; Shirouzu, M.; Yuki, H.; Honma, T.; Ogawa, N.;
Nagano, T.; Yokoyama, S.; Tanaka, A. Flexibility of the P-loop of
Pim-1 kinase: observation of a novel conformation induced by
interaction with an inhibitor. Acta Cryst. 2012, F68, 860–866.
(27) Bullock, A. N.; Russo, S.; Amos, A.; Pagano, N.; Bregman,
H.; Debreczeni, J. É.; Lee, W. H.; von Delft, F.; Meggers, E.;
Knapp, S. Crystal structure of the PIM2 kinase in complex with
an organoruthenium Inhibitor. PLoS ONE 2009, 4, e7112.
(28) Tao, Z.-F.; Hasvold, L. A.; Leverson, J. D.; Han, E. K.;
Guan, R.; Johnson, E. F.; Stoll, V. S.; Stewart, K. D.; Stamper, G.;
Soni, N.; Bouska, J. J.; Luo, Y.; Sowin, T. J.; Lin, N.-H.; Giranda, V.
S.; Rosenberg, S. H.; Penning, T. D. Discovery of 3H-
benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selec-
tive, and orally bioavailable inhibitors of the human protoonco-
gene proviral insertion site in Moloney murine leukemia virus
(PIM) kinases. J. Med. Chem. 2009, 52, 6621–6636.
2
0, 1834–1845.
12) Mukaida, N.; Wang, Y.-Y.; Li, Y.-Y. Roles of Pim-3, a novel
survival kinase, in tumorigenesis. Cancer Sci. 2011, 102, 1437–1442.
13) Mikkers, H.; Nawijn, M.; Allen, J.; Brouwers, C.;
(
(
Verhoeven, E.; Jonkers, J.; Berns, A. Mice deficient for all PIM
kinase display reduced body size and impaired responses to
hematopoietic growth factors. Mol. Cell. Biol. 2004, 24, 6104–6115.
(
14) Morwick, T. Pim kinase inhibitors: a survey of the patent
literature. Expert Opin. Ther. Pat. 2010, 20, 193–212.
15) Drygin, D.; Haddach, M.; Pierre, F.; Ryckman, D. M. Po-
(
tential use of selective and nonselective Pim kinase inhibitors for
cancer therapy. J. Med. Chem. 2012, 55, 8199–8208.
(16) Arunesh, G. M.; Shanthi, E.; Krishna, M. H.; Kumar, J. S.;
Viswanadhan, V. N. Small molecule inhibitors of PIM1 kinase:
July 2009 to February 2013 patent update. Expert Opin. Ther. Pat.
2014, 24, 5–17.
(17) Chen, L. S.; Redkar, S.; Bearss, D.; Wierda, W. G.; Gandhi,
(29) Minakata, S.; Komatsu, M.; Ohshiro, Y. Regioselective
functionalization of 1H-pyrrolo[2,3-b]pyridine via its N-oxide.
Synthesis 1992, 661–663.
V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic
lymphocytic leukemia cells. Blood 2009, 114, 4150–4157.
(18) Mumenthaler, S. M.; Ng, P. Y. B.; Hodge, A.; Bearss, D.;
Berk, G.; Kanekal, S.; Redkar, S.; Taverna, P.; Agus, D. B.; Jain, A.
Pharmacologic inhibition of Pim kinases alters prostate cancer
cell growth and resensitizes chemoresistant cells to taxanes. Mol.
Cancer Ther. 2009, 8, 2882–2893.
(19) Chen, L. S.; Redkar, S.; Taverna, P.; Cortes, J. E.; Gandhi, V.
Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in
acute myeloid leukemia. Blood 2011, 118, 693–702.
(20) Mikkers, H.; Allen, J.; Knipscheer, P.; Romeyn, L.; Hart,
A.; Vink, E.; Berns, A. High-throughput retroviral tagging to
identify components of specific signaling pathways in cancer.
Nat. Genet. 2002, 32, 153–159.
(21) Dakin, L. A.; Block, M. H.; Chen, H.; Code, E.; Dowling, J.
E.; Feng, X.; Ferguson, A. D.; Green, I.; Hird, A. W.; Howard, T.;
Keeton, E. K.; Lamb, M. L.; Lyne, P. D.; Pollard, H.; Read, J.; Wu,
A. J.; Zhang, T.; Zheng, X. Discovery of novel benzylidene-1,3-
ACS Paragon Plus Environment