J. Am. Chem. Soc. 1999, 121, 7959-7960
7959
putational chemistry,8 and space science9 but not in organic
chemistry.10,11 We report here the structure determination of the
tetrathiolane 2,3-dioxide 3 and satisfactory trapping experiments
of SO2 and S3.
1-Adamantyl-tert-butyltetrathiolane 2,3-Dioxide:
First Isolable Wic-Disulfoxide and Efficient Precursor
of S2O
A solution of 1a12 in dichloromethane was treated with an
acetone solution of dimethyldioxirane (DMD)13 (4 molar amounts)
at -20 °C and then the solvent was removed in vacuo at -20
°C.14 Recrystallization of the pale-yellow residue from a mixed
solvent of dichloromethane and hexane at -20 °C led to the two
polymorphic crystals; pale-yellow plates (major, mp 74-76 °C
dec) and yellow prisms (minor, mp 67-68 °C dec), which are
separable mechanically and gave the same 1H NMR spectrum at
-10 °C.15 The infrared spectrum of the crystals, which showed
two strong absorptions due to the SdO stretching vibrations (1109
and 1135 cm-1), and elemental analysis results are indicative of
the compound being a disulfoxide derivative of 1a. Finally, its
structure was determined to be the (2RS,3RS)-2,3-dioxide 3 by
Akihiko Ishii,* Masaaki Nakabayashi, and Juzo Nakayama*
Department of Chemistry, Faculty of Science
Saitama UniVersity, Urawa, Saitama 338-8570, Japan
ReceiVed May 13, 1999
Vic-Disulfoxides (R-disulfoxides) are one of the important
intermediates in the oxidation of oligosulfides and have been
drawing considerable attention.1-3 Nevertheless, most of them are
still elusive and only a few were detected by NMR spectroscopy.3
We recently reported that the oxidation of tetrathiolanes (1)
yielded the corresponding dithiirane 1-oxides (2),4 and have now
discovered that the intermediate, giving 2a, is the corresponding
tetrathiolane 2,3-dioxide (3), a Vic-disulfoxide, which can be
isolated as crystals at room temperature. In addition, we also
disclosed that the decomposition of 3 provides 2a and S2O, which
disproportionates to SO2 and S3. S2O and S3 are sulfur analogues
of O3 and have been drawing much attention in inorganic
chemistry,5 coordination chemistry,6 physical chemistry,7 com-
X-ray crystallographic analysis.16,17 Figure 1 depicts an ORTEP
drawing of 3 obtained from a yellow prism (minor) with the
relevant bond lengths and bond angles. Both oxygen atoms in 3
occupy axial orientations and are trans to each other with respect
to the S(2)-S(3) bond. The length of the bond S(2)-S(3) (2.301
Å) is approximately 12% longer than that of the corresponding
S-S bond of 1a (2.052 Å)12 and the value is comparable to that
of a calculated S-S bond length of meso-MeS(O)S(O)Me (2.303
Å) reported recently.18 The pale-yellow plates (major) were
disordered in the crystals and X-ray crystallographic analysis of
the mixture, which consisted of 86% of one enantiomer (2R,3R
or 2S,3S) and 14% of the other, led to unsatisfactory results.16
The 2,3-dioxide 3 was stable in the crystalline state even at
room temperature for several hours but in solution decomposed
above -10 °C cleanly to the corresponding diastereomeric
dithiirane 1-oxides, (1RS,3SR)- and (1RS,3RS)-2a (53 and 39%,
respectively), the tetrathiolane 1a (8%) (1H NMR), and elemental
(1) For reviews, see: (a) Freeman, F. Chem. ReV. 1984, 84, 117-135. (b)
Clennan, E.; Stensaas, K. L. Org. Prep. Proced. Int. 1998, 30, 551-600. (c)
Oae, S. Kagaku 1979, 33, 240-243. (d) Oae, S.; Takata, T. Kagaku 1978,
34, 891-899.
(2) For recent papers on Vic-disulfoxides: (a) Freeman, F.; Lee, C. J. Org.
Chem. 1988, 53, 1263-1266. (b) Block, E.; Bayer, T. J. Am. Chem. Soc.
1990, 112, 4584-4585. (c) Gu, D.; Harpp, D. N. Tetrahedron Lett. 1993, 34,
67-70. (d) Clennan, E. L.; Zhang, H. J. Org. Chem. 1994, 59, 7952-7954.
(e) Nakayama, J.; Mizumura, A.; Yokomori, Y.; Krebs, A.; Schu¨tz, K.
Tetrahedron Lett. 1995, 36, 8583-8586. (f) Clennan, E. D.; Stensaas, K. L.
J. Org. Chem. 1996, 61, 7911-7917 and references therein.
(3) (a) Freeman, F.; Angeletakis, C. N. J. Am. Chem. Soc. 1981, 103, 6232-
6235. (b) Freeman, F.; Angeletakis, C. N. J. Am. Chem. Soc. 1982, 104, 5766-
5774. (c) Freeman, F.; Angeletakis, C. N. J. Am. Chem. Soc. 1983, 105, 4039-
4049. (d) Fokins, P. L.; Harpp, D. N. J. Am. Chem Soc. 1991, 113, 8998-
9000.
(9) For examples, see: Na, C. Y.; Esposito, L. W. Icarus 1997, 125, 364-
368. Spencer, J. R.; McEwen, A. S.; McGrath, M. A.; Sartretti, P. Icarus
1997, 127, 221-237.
(4) Jin, Y.-N.; Ishii, A.; Sugihara, Y.; Nakayama, J. Tetrahedron Lett. 1998,
39, 3525-3528.
(5) For reviews on S2O, see: Murthy, A. R. V.; Kutty, T. R. N.; Sharma,
D. K. Int. J. Sulf. Chem. 1971, 6, 161-175. Fluck, E. Chem.-Ztg. 1980, 104,
252.
(10) Dodson, R. M.; Srinivasan, V.; Sharma, K. S.; Sauers, R. F. J. Org.
Chem. 1972, 37, 2367-2372.
(11) Ghosh, T.; Bartlett, P. D. J. Am. Chem. Soc. 1988, 110, 7499-7506.
(12) Ishii, A.; Jin, Y.; Sugihara, Y.; Nakayama, J. J. Chem. Soc., Chem.
Commun. 1996, 2681-2682.
(6) Urove, G. A.; Welker, M. E. Organometallics 1988, 7, 1013-1014.
Raseta, M. E.; Cawood, S. A.; Welker, M. E. J. Am. Chem. Soc. 1989, 111,
8268-8270. Brown, D. S.; Owens, C. F.; Wilson, B. G.; Welker, M. E.;
Rheingold, A. L. Organometallics 1991, 10, 871-875 and references therein.
For reviews, see: Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26,
98-109. Pandey, K. K. Prog. Inorg. Chem. 1992, 40, 445-502. Hill, A. F.
AdV. Organomet. Chem. 1994, 36, 159-227.
(7) S2O: Blukis, U.; Myers, R. J. J. Phys. Chem. 1965, 69, 1154-1156.
Phillips, L. F.; Smith, J. J.; Meyer, B. J. Mol. Spectrosc. 1969, 29, 230-243.
Hapke, B.; Graham, F. Icarus 1989, 79, 47-55. Zhang, Q.; Dupre´, P.;
Grzybowski, B.; Vaccaro, P. H. J. Chem. Phys. 1995, 103, 67-79. S3: Meyer,
B.; Stroyer-Hansen, T.; Oommen, T. V. J. Mol. Spectrosc. 1972, 42, 335-
343. Lenain, P.; Picquenard, E.; Lesne, J. L.; Corset, J. J. Mol. Struct. 1986,
142, 355-358.
(8) S2O: Davy, R. D.; Skoumbourdis, E. Mol. Phys. 1998, 94, 539-546.
Mu¨ller, T.; Dupre´, P.; Vaccaro, P. H.; Pe´rez-Bernal, F.; Ibrahim, M.; Iachello,
F. Chem. Phys. Lett. 1998, 292, 243-253. S3: Salahub, D. R.; Foti, A. E.;
Smith, V. H., Jr. J. Am. Chem. Soc. 1978, 100, 7847-7859. Toscano, M.;
Russo, N.; Rubio, J. J. Chem. Soc., Faraday Trans. 1996, 92, 2681-2684.
Baeck, K. K.; Watts, J. D.; Bartlett, R. J. J. Chem. Phys. 1997, 107, 3853-
3863. S2O and S3: Patterson, C. H.; Messmer, R. P. J. Am. Chem. Soc. 1990,
112, 4138-4150. Ivanic, J.; Atchity, G. J.; Ruedenberg, K. J. Chem. Phys.
1997, 107, 4307-4317.
(13) Adam, W.; Bialas, J.; Hadjiarapoglou, L. Chem. Ber. 1991, 124, 2377.
Adam, W.; Hadjiarapoglou, L.; Smerz, A. Chem. Ber. 1991, 124, 227-232.
(14) Repeated recrystallization (3 times) of the residue at -20 °C from
CH2Cl2-EtOH gave pure 3 in 25-30% yield as pale-yellow, fine plates.
(15) 3: 1H NMR (400 MHz, CDCl3, 263 K) δ 1.45 (br s, 9H, t-Bu), 1.65
(br s, 6H), 2.09 (br s, 9H); 13C NMR (100.6 MHz, CDCl3, 263 K) δ 29.2
(CH), 33.4 (br s, CH3), 35.9 (CH2), 42.2 (CH2), 44.5 (C), 46.9 (C), 153.9 (C).
(16) X-ray data for 3: For yellow prisms: monoclinic, space group P21/n,
a ) 6.4150(3) Å, b ) 18.878(1) Å, c ) 13.7410(9) Å, â ) 97.349(4)°, V )
1650.4(2) Å3, Z ) 4, µ(Mo KR) ) 5.54 mm-1, temperature of data collection
153 K. R (Rw) ) 0.077 (0.086) and GOF ) 3.761; max/min residual electron
density ) 2.06/-1.97 e Å-3 for 3683 reflections [I g 2σ(I)] (286 parameters).
For pale-yellow plates: orthorhombic, space group P2nn, a ) 6.5200(6) Å,
b ) 13.970(1) Å, c ) 18.386(2) Å, V ) 1665.6(3) Å3, Z ) 4, µ(Mo KR) )
5.49 mm-1, temperature of data collection 153 K. R (Rw) ) 0.090 (0.094)
and GOF ) 3.422; max/min residual electron density ) 2.37/-0.83 e Å-3
for 1992 reflections [I g 2σ(I)] (210 parameters). For more details of the
X-ray single-crystal analyses, see Supporting Information.
(17) The structure of the precursor for 2 was previously4 assumed to be
the tetrathiolane 1-oxide and now should read the Vic-disulfoxide 3.
(18) Lacombe, S.; Loudet, M.; Dargelos, A.; Robert-Banchereau, E. J. Org.
Chem. 1998, 63, 2281-2291.
10.1021/ja9915955 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/12/1999