In conclusion we have synthesized a pentafluorophenyl and
phenyl substituted diacetylene with an additional dodecyl chain to
investigate self assembly properties on surfaces. Upon wet
deposition on HOPG, huge areas of perfectly ordered patterns
of parallel bright stripes are observed. A closer inspection of the
structure unravels a zipper like interlocked pattern of the molecular
rod as the origin of the bright stripes. The intercalating dodecyl
chain results in the separate dark regions between the bright
stripes. Packing parameters leading to the surface patterns are
supported by intermolecular interactions, in particular of the
pentafluorophenyl and diacetylene subunits and of the alkyl
chains.
The authors acknowledge the support with a postdoctoral
position for L. S. by the Center for Functional Nanostructures
(CFN) of the Deutsche Forschungsgemeinschaft (DFG) within
project C3.
Notes and references
Fig. 1 Pattern of parallel stripes on an HOPG surface covered with 1.
{ Bromoacetylene 4 (0.7 g; 2.6 mmol), acetylene 8 (0.7 g; 2.6 mmol),
Pd2(dba)3CHCl3 (0.08 g; 0.08 mmol; 3 mol%), CuI (0.02 g; 0.1 mmol;
4 mol%) and N-ethyldiisopropylamine (0.5 ml) in toluene (25 ml) was
degassed with nitrogen and stirred at room temperature for 10 hours. After
evaporation of the solvent, column chromatography on SiO2 with hexane
as the eluent gave 1-pentafluorophenyl-4-(49-dodecylphenyl)butadiyne 1
(0.42 g; 0.91 mmol; 35%) as a white solid. Mp: 38 uC. 1H NMR (CDCl3)
dH: 0.94 (t, 3H), 1.31 (br, 18H), 1.35 (m, 2H), 1.66 (q, 2H), 2.67 (t, 2H), 7.20
(d, 2H), 7.49 (d, 2H). 13C NMR (CDCl3) dC: 14.00, 22.72, 29.31, 29.40,
29.50, 29.62, 29.69 (br), 29.72, 31.08, 31.98, 36.10, 64.27 (q, J = 4.0 Hz),
72.30, 85.63, 85.82 (q, J = 3.2 Hz), 99.60 (td, J = 17.8 Hz, J = 4.0 Hz),
117.88, 128.67, 132.67, 137.75 (dm (doublet of multiplet), J = 255 Hz),
142.00 (dm, J = 255 Hz), 145.69, 148.30 (dm, J = 255 Hz). EI-MS m/z
460.3 [M+]. Anal. calcd for C28H29F5: C, 73.03; H, 6.35. Found: C, 73.14;
H, 6.07%.
1 G. W. Coates, A. R. Dunn, L. M. Henling, D. A. Dougherty and
R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 1997, 36, 248.
2 C. R. Patrick and G. S. Prosser, Nature, 1960, 187, 1021.
3 (a) W. J. Feast, P. W. Lo¨venich, H. Puschmann and C. Taliani, Chem.
Commun., 2001, 505; (b) S. W. Watt, C. Dai, A. J. Scott, J. M. Burke,
R. L. Thomas, J. C. Collings, C. Viney, W. Clegg and T. B. Marder,
Angew. Chem., Int. Ed., 2004, 43, 3061; (c) F. Ponzini, R. Zagha,
Fig. 2 STM image of the self assembled ribbons consisting of 1. A model
of the molecular structure of 1 is overlaid to illustrate the packing.
K. Hardcastle and J. S. Siegel, Angew. Chem., Int. Ed., 2000, 39, 2323;
/
ˇ
(d) M. Gdaniec, W. Jankowski, M. J. Milewska and T. Polonski,
Angew. Chem., Int. Ed., 2003, 42, 3903; (e) V. R. Vangala, A. Nangia
and V. M. Lynch, Chem. Commun., 2002, 1304.
4 G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky
and R. H. Grubbs, J. Am. Chem. Soc., 1998, 120, 3641.
5 M. J. Marsella, Z.-Q. Wang, R. J. Reid and K. Yoon, Org. Lett., 2001,
3, 885.
6 M. Weck, A. R. Dunn, K. Matsumoto, G. W. Coates, E. B. Lobkovsky
and R. H. Grubbs, Angew. Chem., Int. Ed., 1999, 38, 2741.
7 A. F. M. Kilbinger and R. H. Grubbs, Angew. Chem., Int. Ed., 2002, 41,
1563.
8 (a) G. Mathis and J. Hunziker, Angew. Chem., Int. Ed., 2002, 41, 3203;
(b) A. Zahn, C. Brotschi and C. J. Leumann, Chem.–Eur. J., 2005, 11,
2125.
A model of the molecular rod 1 has been overlayed onto the
STM image (Fig. 2). The excellent fit between the STM picture
and the molecular model further confirms and illustrates the self
assembled molecule as the origin of the surface pattern. Obviously
the dark regions separating two parallel bright ribbons by about
˚
12 A are due to the intercalating dodecyl chains. However, the
STM picture does not allow individual dodecyl chains to be
resolved and hence, two arrangements differing in the direction of
the kink between the rod and the dodecyl chain are possible. The
perfectly parallel aligned dodecyl chains favour the packing
displayed in Fig. 2. To our surprise, neither the aryl-perfluoroaryl
9 (a) W. Chodkiewicz, Ann. Chim. (Paris), 1957, 13, 2, 819; (b) N. Ghose
and D. R. M. Walton, Synthesis, 1974, 890.
3e,14
…
stacking synthon nor C–H F hydrogen bonds
10 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 36, 3769.
11 K. Sonogashira, in Metal-catalyzed Cross-coupling Reactions, ed.
F. Diederich and P. J. Stang, Wiley-VCH, Weinheim, 1998, p. 203.
12 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 37, 4467; (b) J. Wityak and J. B. Chan, Synth. Commun., 1991, 21,
977.
13 A. Stabel, L. Dasarahi, D. O’Hagan and J. P. Rabe, Langmuir, 1995, 11,
1427.
14 V. R. Thalladi, H.-C. Weiss, D. Bla¨ser, R. Boese, A. Nangia and
G. R. Desiraju, J. Am. Chem. Soc., 1998, 120, 8702.
are dominat-
ing the self assembly of 1 on the HOPG surface. The dense
arrangement of the pentafluoroaryl subunits in the centre of
…
the bright ribbon rather support F F interactions together with
…
C–F
p
interactions as potential intermolecular forces.
Furthermore the packing suggests a stabilizing interaction between
the electronegative fluorine atoms and the electron rich diethynyl
linkers.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 1862–1863 | 1863