1
146
C. Saluzzo et al. / Tetrahedron: Asymmetry 13 (2002) 1141–1146
3
.2.3. Synthesis of (S)-diam-BINAP-dinaphthylurea 4.
washing the catalyst with methanol, the reduction was
performed according the above procedure.
1
D 3
[
h] =+59.0 (c 1, DMF); H NMR (CDCl ) (l): 3.32 (s,
2
5
H); 4.3–4.5 (bs, NH); 6.9–7.8 (m, 14H); 7.8–8.2 (m,
3 31 1
H); 8.10 (d, JHH=4 Hz, 2H); 9.21 (s, 1H); P { H}
NMR(CDCl ) (l): −15.71 (s); elemental analysis: calcd:
C: 80.14, H: 5.14, N: 5.50, O: 3.14, P: 6.08. Found: C:
References
3
8
0.31, H: 5.23, N: 5.70, P: 5.75%.
1. Takaya, H.; Ohta, T.; Noyori, R. In Catalytic Asymmetric
Synthesis; Ojima, I., Ed.; VCH: New York, 1993; pp. 1–40.
3
5
.3. General procedure for the formation of polyureas
, 6 and 7
2
. Kagan, H. B. Bull. Soc. Chim. Fr. 1988, 5, 846–853.
. Miyashita, A.; Yasuda, A.; Takayama, H.; Toruimi, K.;
Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980,
3
Under argon, to a solution of (S)-diam-BINAP 1 (200
mg, 0.29 mmol) in anhydrous dichloromethane (4 mL),
diisocyanate (0.29 mmol, 1 equiv.) (or a mixture of 1
equiv. di- and tri-isocyanate for crosslinked 7b) was
added. The suspension was then stirred overnight and
isopropanol (1 mL) was added. After stirring the mixture
for 1 h, the solid was filtered under argon and washed
twice with isopropanol (2 mL) and twice with
dichloromethane (2 mL). The polyurea was dried under
vacuum.
1
02, 7932–7934.
4
. Mashima, K.; Kusano, K.-H.; Sato, N.; Matsumura, Y.-I.;
Nozaki, K.; Kumobayashi, H.; Sayo, N.; Hori, Y.;
Ishizaki, T.; Akutagawa, S.; Takaya, H. J. Org. Chem.
1994, 59, 3064–3076.
5
6
7
. Takaya, H.; Ohta, T.; Sayo, N.; Kumobayashi, H.; Akuta-
gawa, S.; Inoue, S.-I.; Kasahara, I.; Noyori, R. J. Am.
Chem. Soc. 1987, 1, 1596–1597.
. Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.;
Kozawa, E.; England, A. F.; Ikariya, T.; Noyori, R.
Angew. Chem., Int. Ed. Engl. 1998, 37, 1703–1707.
. Kumobayashi, H. Recl. Trav. Chim. Pays-bas 1996, 115,
1
Polyurea 5: [h] =−87.0 (c 0.041, DMF); H NMR
D
(
DMSO-d ) (l): 1.0–1.3 (m, CH ); 3.2–3.7 (m, CH );
6
3
2
2
01–210.
3
1
1
4
.2–4.3 (m, CH, NH); 6.5–8.0 (m, CH); P { H} NMR
8
9
. Baiker, A. J. Mol. Cat. A: Chem. 1997, 115, 473–493.
. Shutteworth, S. J. S.; Allin, M.; Sharma, P. K. Synthesis
1997, 1217–1239.
(
DMSO-d ) (l): −15.75 (s); mp >260°C.
6
1
Polyurea 6: [h] =−91.0 (c 0.086, DMF); H NMR
D
1
1
0. Bayston, D. J.; Fraser, J. L.; Ashton, M. R.; Baxter, A. D.;
(
DMSO-d ) (l): 1.05(d, CH ); (s, CH ); 4.2–4.3 (m, CH ,
6 3 2 2
31 1
Polywka, M. E. C.; Moses, E. J. Org. Chem. 1998, 63,
3
1. Ohkuma, T.; Takeno, H.; Honda, Y.; Noyori, R. Adv.
Synth. Catal. 2001, 369–375.
12. Yu, H.-B.; Hu, Q.-S.; Pu, L. Tetrahedron Lett. 2000, 41,
1681–1685.
NH); 6.4–8.0 (m, CH); 8.51 (s, CH); P { H} NMR
DMSO-d ) (l): −15.71 (s); mp >260°C.
137–3140.
(
6
1
Polyurea 7a: [h] =−96.0 (c 0.345, DMF); H NMR
D
(
DMSO-d ), 1.21 (d, CH ); 2.04 (s, CH ); 4.3–4.4 (m,
CH2, NH); 6.66 (d, JHH=6.2, CH); 7–7.6 (m, CH);
.7–8.0 (m, CH). P { H} NMR (DMSO-d ), −15.75 (s);
6
3
3
3
3
1
1
1
3. Yu, H.-B.; Hu, Q.-S.; Pu, L. J. Am. Chem. Soc. 2000, 122,
500–6501.
7
6
6
mp >260°C.
1
4. Fan, Q.-H.; Ren, C.-Y.; Yeung, C.-H.; Hu, W.-H.; Chan,
A. S. C. J. Chem. Soc. 1999, 121, 7407–7408.
15. Fan, Q.-H.; Chen, Y.-M.; Chan, X.-M.; Jiang, D.-Z.; Xi,
1
Polyurea 7b: H NMR (DMSO-d ), 0.9–1.1 (CH ); 2.04
6
3
(
s, CH ); 4.3 (bs, NH); 4.6–4.7 (m, CH ); 6.5–8.1 (m, CH);
P { H} NMR (DMSO-d ), −15.02 (s); mp >260°C.
3
2
3
1
1
F.; Chan, A. C. S. Chem. Commun. 2000, 789–790.
6
1
6. Lemaire, M.; ter Halle, R.; Schulz, E.; Colasson, B.;
3
.4. Typical procedure for the preparation of the Ru
Spagnol, M.; (Rhodia/CNRS) French patent FR2789992,
1
8
19
neutral catalyst and Ru-cationic catalyst
1999, PCT: WO0049028, 2000.
1
7. ter Halle, R.; Colasson, B.; Schulz, E.; Spagnol, M.;
The polymer (0.006 mmol) and [RuCl (benzene)] (1.3
2
2
Lemaire, M. Tetrahedron Lett. 2000, 643–646.
mg, 0.003 mmol) were stirred at room temperature for 3
1
8. Lemaire, M.; ter Halle, R.; Schulz, E.; Colasson, B.;
Spagnol, M.; (Rhodia/CNRS) French patent FR 2790477,
Lemaire, M.; ter Halle, R.; Schulz, E.; Colasson, B.;
Spagnol, M.; Saluzzo, C.; Lamouille, T.; PCT WO
1
8
19
h in DMF (1 mL) or in ethanol/benzene (8/1). The
solvent was removed under reduced pressure to yield a
brown solid.
0
052081, 2000.
3
.5. Typical procedure for the reduction of methyl
1
9. Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M.
Chem. Rev. 2000, 100, 2159–2231 and references cited
therein.
acetoacetate
To a suspension of the catalyst in methanol (1.5 mL), the
substrate (5.8 mmol) was added and hydrogen intro-
duced into the autoclave to a pressure of 40 atm (S/C:
2
2
0. Gamez, P. Ph.D. Thesis, University Claude Bernard Lyon
1, 1995.
1. MALDI-TOF (matrix-assisted laser desorption ionization
time of flight): Barbacci, D. C.; Edmondson, R. D.;
Russell, D. H. Int. J. Mass Spectrom. Ion Process. 1987,
1
000). The mixture was rigorously stirred at 50°C for 18
h. After carefully venting the hydrogen, the sample was
centrifuged and the liquid phase was removed by syringe
to determine the activity and selectivity by GC.
165/166, 221–235 and references cited therein.
2
2. Kitamura, M.; Tokunaga, T.; Takaya, H.; Noyori, R.
In order to recycle the catalyst, the product solution was
separated from the catalyst by centrifugation then trans-
ferred via cannula or by filtration under argon. After
Tetrahedron Lett. 1991, 32, 4163–4166.
23. Mashima, K.; Kusano, K.; Ohta, T.; Noyori, R.; Takaya,
H. J. Chem. Soc., Chem. Commun. 1989, 1208–1210.