D
I. Yavari et al.
Letter
Synlett
O
O
N
TS1
Z
Ar
Z
5.60
kcal/mol
O
O
N
O
COAr
Z
Ar
Z
Z
Z
N
TS1
+
10
4
Reactants
E = 0 kcal/mol
TS2
– 3.01
kcal/mol
O
O
N
Z
Ar
Z
– 5.21
kcal/mol
intermediate 11
O
Z
O
Ar
Z
– 9.81
kcal/mol
11
N
product 8
Z = CO2Me
Ar = p-Tol
8
Reaction progress
Figure 5 DFT diagram for mechanistic rationalization of the regioselective nonconcerted formation of product 8. Relative energies (ΔE) for cycloaddi-
tion reaction are calculated according to reactants whose E = –1932.777495 Hartree at b3lyp/6-311+G(d,p) level of theory.
In summary, we have developed a regio- and diastereo-
selective synthesis of functionalized 5a,5b-dihydro-
5H,13H-naphtho[1′′,8′′:4′,5′,6′]pentaleno[1′:3,4]pyrrolo[2,1-
a]-isoquinolin-5-ones via 1,3-dipolar cycloaddition of 7,9-
bis(alkoxycabonyl)-8H-cyclopent[a]acenaphthylen-8-ones
with carbonyl-stabilized isoquinolinium ylides, derived
from isoquinoline and phenacyl bromides in the presence
of Et3N in MeCN. Based on DFT calculations at b3lyp/6-
311+g(d,p) level of theory, a nonconcerted mechanism is
proposed to explain the selectivity of this reaction. The
methodology reported here may serve as a convenient
strategy to create a wide range of functionalized heptacy-
clic pyrrolo[2,1-a]isoquinoline derivatives.
(7) (a) Argyropoulos, N. G.; Alexandrou, N. E. J. Heterocycl. Chem.
1979, 16, 731. (b) Tsatsaroni, E. G.; Argyropoulos, N. G.;
Alexandrou, N. E.; Houndas, A.; Terzis, A. J. Heterocycl. Chem.
1984, 21, 701. (c) Tsatsaroni, E. G.; Argyropoulos, N. G.;
Alexandrou, N. E.; Houndas, A.; Terzis, A. J. Heterocycl. Chem.
1984, 21, 1405.
(8) (a) Shi, R.-G.; Sun, J.; Yan, C.-G. ACS Omega 2017, 2, 7820. (b) An,
J.; Yang, Q. Q.; Wang, Q.; Xiao, W. J. Tetrahedron Lett. 2013, 54,
3834. (c) Fernández, N.; Carrillo, L.; Vicario, J. L.; Badia, D.;
Reyes, E. Chem. Commun. 2011, 47, 12313. (d) Ruano, J. L. G.;
Fraile, A.; Martin, M. R.; Gonzalez, G.; Fajardo, C.; Martin-Castro,
A. M. J. Org. Chem. 2011, 76, 3296. (e) Peng, W.; Zhu, S. J. Chem.
Soc., Perkin Trans. 1 2001, 3204.
(9) (a) Allen, C. F. H.; Van Allan, J. A. J. Org. Chem. 1952, 17, 845.
(b) Craig, J. T.; Robins, M. D. W. Aust. J. Chem. 1968, 21, 2237.
(10) Typical Procedure for the Preparation of 8
To a stirred mixture of N-substituted isoquinolinium salts 7 (1.0
mmol) and Et3N (1.1 mmol) in MeCN (6.0 mL) was added cyclo-
pentadienone 4 (1 mmol),9a and the resulting mixture was
stirred at 80 °C for 3 h. After completion of the reaction (TLC
monitoring), the mixture was filtered, and the precipitate was
washed with cold MeCN and n-hexane to afford the products
8a–j.
Dimethyl 4-Benzoyl-5-oxo-4H,12cH-naphtho-[1′′,8′′:4′,5′,6′]-
pentaleno[1′:3,4]pyrrolo[2,1-a]isoquinoline-4a,6(5H)-dicar-
boxylate (8a)
Supporting Information
Supporting information for this article is available online at
References and Notes
(1) Chapman, O. L.; McIntosh, C. L. J. Chem. Soc., Chem. Commun.
1971, 770.
(2) Pal, R.; Mukherjee, S.; Chandrasekhar, S.; Guru, R. T. N. J. Phys.
Chem. A 2014, 118, 3479.
(3) Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. Rev. 1965,
65, 261.
(4) Potter, R. G.; Hughes, T. S. J. Org. Chem. 2008, 73, 2995.
(5) White, D. M. J. Org. Chem. 1974, 39, 1951.
(6) Quintard, A.; Rodriguez, J. Angew. Chem. Int. Ed. 2014, 53, 4044.
Orange crystals; yield 0.487 g (86%); mp 224–225 °C. IR (KBr):
3061, 2976, 1742, 1730, 1680, 1608, 1020 cm–1 1H NMR: =
.
3.51 (s, 3 H), 3.86 (s, 3 H), 4.82 (d, J = 7.3 Hz, 1 H), 4.93 (s, 1 H),
5.26 (d, J = 7.3 Hz, 1 H), 6.07 (t, J = 7.3 Hz, 1 H), 6.13 (s, 1 H), 6.37
(d, J = 7.5 Hz, 1 H), 6.75 (d, J = 7.3 Hz, 1 H), 6.83 (t, J = 7.3 Hz, 1
H), 7.50 (t, J = 7.0 Hz, 1 H), 7.56 (t, J = 7.0 Hz, 1 H), 7.62 (d, J = 7.0
Hz, 2 H), 7.78 (d, J = 7.0 Hz, 1 H), 7.84 (t, J = 8.0 Hz, 1 H), 8.00 (t, J
= 8.0 Hz, 2 H), 8.15 (d, J = 8.0 Hz, 2 H), 8.27 (d, J = 7.0 Hz, 1 H). 13
NMR: = 52.0 (MeO), 52.6 (MeO), 71.7 (CH), 73.1 (C), 73.7 (CH),
C
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–E