J.L.C. Sousa et al. / Catalysis Communications 12 (2011) 459–463
463
References
[
[
[
1] R.A. Sheldon, Chem. Commun. (2008) 3352–3365.
2] J.L.F. Monteiro, C.O. Veloso, Top. Catal. 27 (2004) 169–180.
3] L. Hagvall, C. Bäcktorp, S. Svensson, G. Nyman, A. Börje, A.-T. Karlberg, Chem. Res.
Toxicol. 20 (2007) 807–814.
[
[
4] N. Mizuno, K. Yamaguchi, K. Kamata, Coord. Chem. Rev. 249 (2005) 1944–1956.
5] R. Neumann, in: K.D. Karlin (Ed.), Progress in Inorganic Chemistry, 47, John Wiley
&
Sons, Inc, 1998, pp. 317–370.
[
[
6] C.L. Hill, C.M. Prosser-McCartha, Coord. Chem. Rev. 143 (1995) 407–455.
7] A.B.D. Nandiyanto, S.-G. Kim, F. Iskandar, K. Okuyama, Micropor. Mesopor. Mater.
120 (2009) 447–453.
[
8] B.J.S. Johnson, A. Stein, Inorg. Chem. 40 (2001) 801–808.
[
9] Y. Guo, Y. Yang, C. Hu, C. Guo, E. Wang, Y. Zou, S. Feng, J. Mater. Chem. 12 (2002)
3046–3052.
[10] N.M. Okun, T.M. Anderson, C.L. Hill, J. Am. Chem. Soc. 125 (2003) 3194–3195.
[11] N.M. Okun, T.M. Anderson, C.L. Hill, J. Mol. Catal. A: Chem. 197 (2003) 283–290.
[12] Y. Guo, C. Hu, C. Jiang, Y. Yang, S. Jiang, X. Li, E. Wang, J. Catal. 217 (2003) 141–151.
[13] O.A. Kholdeeva, M.P. Vanina, M.N. Timofeeva, R.I. Maksimovskaya, T.A. Trubitsina,
M.S. Melgunov, E.B. Burgina, J. Mrowiec-Bialon, A.B. Jarzebski, C.L. Hill, J. Catal. 226
(
2004) 363–371.
14] N.M. Okun, M.D. Ritorto, T.M. Anderson, R.P. Apkarian, C.L. Hill, Chem. Mater. 16
2004) 2551–2558.
Fig. 5. Time course for the epoxidation of geraniol in the presence of PW11Fe/SiO
a) and with the removal of the catalyst after 15 min of reaction (b).
2
[
(
(
[
[
15] L. Li, C. Liu, A. Geng, C. Jiang, Y. Guo, C. Hu, Mater. Res. Bull. 41 (2006) 319–332.
16] M.S.S. Balula, H.I.S. Nogueira, A.M.V. Cavaleiro, Mater. Sci. Forum 514–516 (2006)
1206–1210.
difference between final conversion values, which are significantly
lower in the experiments with removal of the catalyst, suggesting that
this epoxidation process is truly heterogeneous. The slight increase on
geraniol conversion after the removal of the catalyst can be due to the
presence of some nanoparticles that might remain in the solution or to
some leaching of the POM into the solution.
[
[
[
[
17] N.V. Maksimchuk, M.S. Melgunov, Y.A. Chesalov, J. Mrowiec-Bialon, A.B. Jarzebski,
O.A. Kholdeeva, J. Catal. 246 (2007) 241–248.
18] L. Chen, K. Zhu, L.-H. Bi, A. Suchopar, M. Reicke, G. Mathys, H. Jaensch, U. Kortz,
R.M. Richards, Inorg. Chem. 46 (2007) 8457–8459.
19] J.A.F. Gamelas, D.V. Evtuguin, A.P. Esculcas, Transition Met. Chem. 32 (2007)
1
061–1067.
20] H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Electrochim. Acta 54 (2009)
495–3500.
3
4
. Conclusions
[21] C.M. Granadeiro, R.A.S. Ferreira, P.C.R. Soares-Santos, L.D. Carlos, T. Trindade, H.I.S.
Nogueira, J. Mater. Chem. 20 (2010) 3313–3318.
[
22] I.C.M.S. Santos, M.M.Q. Simões, M.M.M.S. Pereira, R.R.L. Martins, M.G.P.M.S. Neves,
This paper presents the preparation and characterization of silica
J.A.S. Cavaleiro, A.M.V. Cavaleiro, J. Mol. Catal. A: Chem. 195 (2003) 253–262.
nanoparticles supporting iron(III) containing POMs (of Keggin-type,
PW11Fe/SiO , and sandwich-type, (PW Fe /SiO ). POM/SiO com-
[23] A.C. Estrada, M.M.Q. Simões, I.C.M.S. Santos, M.G.P.M.S. Neves, A.M.S. Silva, J.A.S.
Cavaleiro, A.M.V. Cavaleiro, Catal. Lett. 128 (2009) 281–289.
2
)
9 2
4
2
2
[
24] A.C. Estrada, M.M.Q. Simões, I.C.M.S. Santos, M.G.P.M.S. Neves, A.M.S. Silva, J.A.S.
posites were synthesized by a system of reverse micelles giving rise to
nanoscale spherical particles, with diameters between 25 and 35 nm.
It was found that core/shell structures could form, with the POM
encapsulated by the silica, while in other cases the POM was dispersed
in the nanoparticles.
Cavaleiro, A.M.V. Cavaleiro, Appl. Catal. A: Gen. 366 (2009) 275–281.
[25] I.C.M.S. Santos, M.M.Q. Simões, M.S.S. Balula, M.G.P.M.S. Neves, J.A.S. Cavaleiro,
A.M.V. Cavaleiro, Synlett (2008) 1623–1626.
[
[
26] T.J.R. Weakley, S.A. Malik, J. Inorg. Nucl. Chem. 29 (1967) 2935–2944.
27] X. Zhang, Q. Chen, D.C. Duncan, R.J. Lachicotte, C.L. Hill, Inorg. Chem. 36 (1997)
4381–4386.
28] Z. Ye, M. Tan, G. Wang, J. Yuan, J. Mater. Chem. 14 (2004) 851–856.
29] R.C. Schroden, C.F. Blanford, B.J. Melde, B.J.S. Johnson, A. Stein, Chem. Mater. 13
[
[
The nanocomposites synthesized were tested as heterogeneous
catalysts in the epoxidation of geraniol with H
showed the best catalytic activity for this oxidation reaction was
PW11Fe/SiO , with 96% of geraniol conversion after 3 h of reaction.
2 2
O . The catalyst that
(2001) 1074–1081.
[30] A.M.V. Cavaleiro, J.D.P. Jesus, H.I.S. Nogueira, in: P. Braunstein, L.A. Oro, P.R.
Raithby (Eds.), Molecular Clusters in Chemistry, 1, Wiley-VCH, 1999, pp. 444–458.
2
[
[
[
31] A.J. Stapleton, M.E. Sloan, N.J. Napper, R.C. Burns, Dalton Trans. (2009) 9603–9615.
32] P. Liu, C. Wang, C. Li, J. Catal. 262 (2009) 159–168.
33] K. Kamata, M. Kotani, K. Yamaguchi, S. Hikichi, N. Mizuno, Chem. Eur. J. 13 (2007)
639–648.
34] W. Adam, P.L. Alsters, R. Neumann, C.R. Saha-Möller, D. Sloboda-Rozner, R. Zhang,
J. Org. Chem. 68 (2003) 1721–1728.
Selectivities of 88–91% for 2,3-epoxygeraniol were found. Globally,
the new nanostructured catalysts seemed to be more selective than
the corresponding TBA salts used in homogeneous conditions, with
the advantage of ease of separation and reuse.
[
[
35] R. Neumann, A.M. Khenkin, D. Juwiler, H. Miller, M. Gara, J. Mol. Catal. A: Chem.
117 (1997) 169–183.
Acknowledgments
Thanks are due to the University of Aveiro and FCT/FEDER for
funding CICECO and QOPNA.