Organic & Biomolecular Chemistry
Communication
room temperature without the addition of extra oxidants. The
reaction mechanism was deeply investigated by conducting
control experiments, showing that both the electron/proton
transfer (ET/–H+) and the hydrogen atom transfer (HAT) may
involve in the reaction.
M. Ehrenshaft, Annu. Rev. Phytopathol., 2000, 38, 461–
490.
6 (a) S. Kuyama and T. Tamura, J. Am. Chem. Soc., 1957, 79,
5725–5726; (b) S. Kuyama and T. Tamura, J. Am. Chem. Soc.,
1957, 79, 5726–5729.
7 (a) S. W. Zhang, Z. C. Tang, W. H. Bao, J. Li, B. D. Guo,
S. P. Huang, Y. Zhang and Y. J. Rao, Org. Biomol. Chem.,
2019, 17, 4364–4369; (b) Y. Zhang, Y. Cao, L. Lu, S. Zhang,
W. Bao, S. Huang and Y. Rao, J. Org. Chem., 2019, 84, 7711–
7721.
Conflicts of interest
There are no conflicts to declare.
8 D. V. Kravchenko, V. M. Kysil, S. E. Tkachenk,
S. Maliarchouk, I. M. Okun and A. V. Ivachtchenko,
Eur. J. Med. Chem., 2005, 40, 1377–1383.
Acknowledgements
9 X. M. Lu, J. Li, Z. J. Cai, R. Wang, S. Y. Wang and S. J. Ji,
Org. Biomol. Chem., 2014, 12, 9471–9477.
10 A. Cappelli, C. Nannicini, S. Valenti, G. Giuliani, M. Anzini,
L. Mennuni and G. Giorgi, ChemMedChem, 2010, 5, 739–
748.
11 Z. Song and A. P. Antonchick, Tetrahedron, 2016, 72, 7715–
7721.
12 A. K. Yadav and L. D. S. Yadav, Tetrahedron Lett., 2016, 57,
1489–1491.
We thank the National Key R&D Program of China
(2018YFA0901700), the Natural Science Foundation of Jiangsu
Province (Grant No. BK20160167), the Thousand Talents Plan
(Young Professionals), the Fundamental Research Funds for
the Central Universities (JUSRP51712B), the National First-
class Discipline Program of Light Industry Technology and
Engineering (LITE2018-14) and Postdoctoral Foundation in
Jiangsu Province (2018K153C) for the funding support.
13 C. Huo, F. Chen, Z. Quan, J. Dong and Y. Wang,
Tetrahedron Lett., 2016, 57, 5127–5131.
14 N. Sakai, S. Matsumoto and Y. Ogiwara, Tetrahedron Lett.,
2016, 57, 5449–5452.
Notes and references
1 (a) J. A. Labinger and J. E. Bercaw, Nature, 2002, 417, 507–
514; (b) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. 15 R. Kawade, K. D. B. Huple, R. J. Lin and R. S. Liu, Chem.
Rev., 2009, 110, 624–655; (c) I. Hussain and T. Singh, Adv. Commun., 2015, 51, 6625–6628.
Synth. Catal., 2014, 356, 1661–1696; (d) P. L. Arnold, 16 M. Nishino, K. Hirano, T. Satoh and M. Miura, J. Org.
M. W. McMullon, J. Rieb and F. E. Kühn, Angew. Chem., Int. Chem., 2011, 76, 6447–6451.
Ed., 2015, 54, 82–100; (e) G. B. Shul’pin, Org. Biomol. 17 F. Peng, P. Zhi, H. Ji, H. Zhao, F. Y. Kong, X. Z. Liang and
Chem., 2010, 8, 4217–4228. Y. M. Shen, RSC Adv., 2017, 7, 19948–19953.
2 (a) G. Ciamician, Science, 1912, 36, 385–394; (b) C. K. Prier, 18 X. Ju, D. Li, W. Li, W. Yu and F. Bian, Adv. Synth. Catal.,
D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 2012, 354, 3561–3567.
113, 5322–5363; (c) D. M. Schultz and T. P. Yoon, Science, 19 J. Tang, G. Grampp, Y. Liu, B. X. Wang, F. F. Tao,
2014, 343, 985–993; (d) J. Xuan and W. J. Xiao, Angew.
Chem., Int. Ed., 2012, 51, 6828–6838; (e) Z. J. Shen,
L. J. Wang, X. Z. Liang, H. Q. Xiao and Y. M. Shen, J. Org.
Chem., 2015, 80, 2724–2732.
S. C. Wang, W. J. Hao, S. Z. Yang, S. J. Tu and B. Jiang, Adv. 20 X. L. Yang, J. D. Guo, T. Lei, B. Chen, C. H. Tung and
Synth. Catal., 2019, 361, 3837–3851; (f) Z. J. Shen, L. Z. Wu, Org. Lett., 2018, 20, 2916–2920.
H. N. Shi, W. J. Hao, S. J. Tu and B. Jiang, Chem. Commun., 21 T. P. Nicholls, G. E. Constable, J. C. Robertson,
2018, 54, 11542–11545; (g) L. Y. Xie, T. G. Fang, J. X. Tan,
B. Zhang, Z. Cao, L. H. Yang and W. M. He, Green Chem.,
M. G. Gardiner and A. C. Bissember, ACS Catal., 2015, 6,
451–457.
2019, 21, 3858–3863; (h) Q. S. Liu, L. L. Wang, H. L. Yue, 22 S. Firoozi, M. Hosseini-Sarvari and M. Koohgard, Green
J. S. Li, Z. D. Luo and W. Wei, Green Chem., 2019, 21, 1609–
1613.
3 (a) K. Nakajima, Y. Miyake and Y. Nishibayashi, Acc. Chem.
Res., 2016, 49, 1946–1956; (b) A. K. Yadav and
L. D. S. Yadav, Tetrahedron Lett., 2015, 56, 6696–6699;
Chem., 2018, 20, 5540–5549.
23 (a) M. Hosseini-Sarvari, M. Koohgard, M. Firoozi,
S. Mohajeri, A. Tavakolian and H. Alizarin, New J. Chem.,
2018, 42, 6880–6888; (b) K. Sharma, B. Das and P. Gogoi,
New J. Chem., 2018, 42, 18894–18905.
(c) M. L. Deb, S. S. Dey, I. Bento, M. T. Barros and 24 L. Chen, C. S. Chao, Y. Pan, S. Dong, Y. C. Teo, J. Wang and
C. D. Maycock, Angew. Chem., Int. Ed., 2013, 52, 9791–9795.
4 T. P. Yoon, ACS Catal., 2013, 3, 895–902.
5 (a) S. Yamazaki, A. Okubo, Y. Akiyama and K. Fuwa, Agric.
C. H. Tan, Org. Biomol. Chem., 2013, 11, 5922–5925.
25 G. Wei, C. Basheer, C. H. Tan and Z. Jiang, Tetrahedron
Lett., 2016, 57, 3801–3809.
Biol. Chem., 1975, 39, 287–288; (b) P. E. Hartman, 26 Z. Liang, S. Xu, W. Tian and R. Zhang, Beilstein J. Org.
W. J. Dixon, T. A. Dahl and M. E. Daub, Photochem. Chem., 2015, 11, 425–430.
Photobiol., 1988, 47, 699–703; (c) F. Macri and A. Vianello, 27 A. K. Yadav and L. D. S. Yadav, Tetrahedron Lett., 2017, 58,
Plant, Cell Environ., 1979, 2, 267–271; (d) M. E. Daub and
552–555.
This journal is © The Royal Society of Chemistry 2019
Org. Biomol. Chem., 2019, 17, 8958–8962 | 8961