8530
G. Mehta et al. / Tetrahedron Letters 42 (2001) 8527–8530
simple hydride model (as well as LiH transition state
model) at semi-empirical level constitutes an economi-
cal predictive tool for facial selectivities in nucleophilic
additions to sterically unbiased ketones and reinforces
our earlier3b proposals in this regard.
6. Substrates 4a and 4c–f were prepared from carbonyl
protected 4b5 through routine but non-trivial functional
group transformations and overall access to 4a–f was
certainly a very demanding endeavor.
7. All new compounds reported here were fully character-
1
ized on the basis of complementary spectroscopic (IR, H
and 13C NMR and MS) and analytical data. Except in
the case of 5c/6c and 5e/6e, the diastereomers 5a,b,d,f and
6a,b,d,f were separated and individually characterized.
Selected spectral data: 13C NMR l (75 MHz, CDCl3); 5a:
120.5, 70.1, 50.1, 43.7, 38.3, 37.3, 33.7. 6a: 121.7, 70.8,
51.0, 43.7, 37.8, 37.4, 35.4. 5b: 173.0, 71.4, 54.0, 51.7,
49.3, 42.2, 38.7, 33.3. 6b: 174.3, 72.0, 51.7, 50.7, 49.8,
42.4, 38.6, 37.7. 5c/6c: 100.6, 84.8, 71.8, 71.1, 68.7, 52.1,
51.6, 44.7, 44.6, 40.9, 38.2, 37.5, 37.3, 33.1, 29.7. 5d: 72.3,
61.0, 54.3, 46.9, 39.6, 39.4, 32.0. 6d: 72.4, 61.4, 50.1, 47.0,
39.5, 39.4, 36.4. 5e/6e: 72.9, 72.5, 54.3, 49.7, 48.8, 48.7,
41.0, 40.9, 39.9, 39.8, 36.4, 31.8, 20.1, 19.9, 13.5, 13.2. 5f:
136.9, 115.8, 72.1, 55.6, 50.1, 42.6, 39.3, 31.8. 6f: 137.4,
116.1, 72.7, 51.5, 50.3, 42.8, 39.3, 36.4.
Acknowledgements
R.S., U.D.P. and V.G. thank CSIR, UGC and
JNCASR, respectively, for research fellowships.
References
1. For recent reviews on diastereoselection, see a thematic
issue: Chem. Rev. 1999, 99, 1069–1480; (b) Mehta, G.;
Chandrasekhar, J. Chem. Rev. 1999, 99, 1437.
2. Mehta, G.; Khan, F. A. Tetrahedron Lett. 1992, 33, 3065.
3. (a) Mehta, G.; Khan, F. A. J. Am. Chem. Soc. 1990, 112,
6140; (b) Ganguly, B.; Chandrasekhar, J.; Khan, F. A.;
Mehta, G. J. Org. Chem. 1993, 58, 1734; (c) Mehta, G.;
Khan, F. A.; Ganguly, B.; Chandrasekhar, J. J. Chem.
Soc., Chem. Commun. 1992, 1711; (d) Mehta, G.; Ravikr-
ishna, C.; Ganguly, B.; Chandrasekhar, J. J. Chem. Soc.,
Chem. Commun. 1997, 75; (e) Mehta, G.; Ravikrishna,
C.; Kalyanraman, P.; Chandrasekhar, J. J. Chem. Soc.,
Perkin Trans. 1 1998, 1895; (f) Halterman, R. L.;
McEvoy, M. A. J. Am. Chem. Soc. 1990, 112, 6690; (g)
Ohwada, T. J. Am. Chem. Soc. 1992, 114, 8818; (h) Wipf,
P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 117678; (i)
Fraser, R. R.; Faibish, N. C.; Kong, F.; Bednarski, F. J.
Org. Chem. 1997, 62, 6164; (j) Li, H.; le Noble, W. J.
Recl. Trav. Chim. Pays-Bas 1992, 111, 199.
8. (a) Paddow-Row, M. N.; Wu, Y.-D.; Houk, K. N. J. Am.
Chem. Soc. 1992, 114, 10638; (b) Jeyaraj, D.; Yadav, A.
A.; Yadav, V. K. Tetrahedron Lett. 1997, 38, 4483.
9. Cieplack, A. S. J. Am. Chem. Soc. 1981, 103, 4540.
10. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Jones,
P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J.
R.; Kheith, T.; Petersson, G. A.; Montgomery, J. A.;
Gaghavachari, M. A.; Al-Laham, M. A.; Zakrzewski, V.
G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov,
B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.;
Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.;
Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.;
Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.;
Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian
94: Gaussian, Inc., Pittsburgh, PA, 1995.
4. (a) Meinwald, J.; Crandall, J. K. J. Am. Chem. Soc. 1966,
88, 1292; (b) Wiberg, K. B.; Ubersax, R. W. J. Org.
Chem. 1972, 37, 3827.
5. Conti, P.; Kozikowski, A. P. Tetrahedron Lett. 2000, 41,
4053.
11. (a) Dewar, M. J. S.; Theil, W. J. Am. Chem. Soc. 1977,
99, 4899; (b) Dewar, M. J. S.; Zoebisch, Z.; Healy, E. F.;
Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.
12. NBO Version 3.1. Glendening, E. D.; Reed, A.; Carpen-
ter, E J. E.; Weinhold, F.