2
6
301 unique (Rint = 0.0185), R (on F, for F > 2r) = 0.0227, R
w
(on
7 (a) Y. Kondo, M. Shilai, M. Uchiyama and T. Sakamoto, J. Am. Chem.
Soc., 1999, 121, 3539; (b) M. Uchiyama, T. Miyoshi, Y. Kajihara, T.
Sakamoto, Y. Otani, T. Ohwada and Y. Kondo, J. Am. Chem. Soc., 2002,
2
all F ) = 0.0642, S = 1.036, final difference map features within
−
3
˚
0.344 e A .
±
1
24, 8514; (c) M. Uchiyama, Y. Matsumoto, S. Usui, Y. Hashimoto and
K. Morokuma, Angew. Chem., Int. Ed., 2007, 46, 926; (d) Y. Kondo,
J. V. Morey, J. C. Morgan, H. Naka, D. Nobuto, P. R. Raithby, M.
Uchiyama and A. E. H. Wheatley, J. Am. Chem. Soc., 2007, 129, 12734.
T. Imahori, M. Uchiyama, T. Sakamoto and Y. Kondo, Chem.
Commun., 2001, 2450.
Conclusions
8
The unsolvated zincate 4 has been prepared by direct combination
of its two homometallic components in a non-polar solvent
mixture and fully characterized in solution and in the solid state. Its
crystal structure shows a dinuclear arrangement based on a planar
LiNZnC ring. Due to an intermolecular interaction between the
terminal methyl of one asymmetric unit and the lithium of another,
9 (a) M. Uchiyama, S. Nakamura, T. Ohwada, M. Nakamura and E.
Nakamura, J. Am. Chem. Soc., 2004, 126, 10897; (b) A. E. H. Wheatley,
New J. Chem., 2004, 28, 435; (c) D. J. Linton, P. Schooler and A. E. H.
Wheatley, Coord. Chem. Rev., 2001, 223, 53.
1
0 E. Weiss and R. Wolfrum, Chem. Ber., 1968, 101, 35.
11 M. Westerhausen, B. Rademacher and W. Schwarz, Z. Naturforsch., B:
Chem. Sci., 1994, 49, 199.
4
presents an infinite chain arrangement in the solid state. DFT
calculations show that co-complexation of LiHMDS and Me Zn
1
2 H. R. L. Barley, W. Clegg, S. H. Dale, E. Hevia, G. W. Honeyman,
A. R. Kennedy and R. E. Mulvey, Angew. Chem., Int. Ed., 2005, 44,
6018.
2
is thermodynamically favoured due to the energy gained through
sequentially increasing the aggregation, consistent with the stable
polymeric structure observed experimentally. When PMDETA is
added to 4 the new solvated zincate is obtained which to the best
of our knowledge is the first example of a dialkyl-amido zincate
where the amide ligand adopts a terminal position and it is solely
bonded to zinc; whereas the two metals are connected through
one of the alkyl groups. DFT calculations also reveal that this
arrangement is energetically preferred to the common one found
in other compounds of this family, primarily due to the steric bulk
of the neutral donor PMDETA which solvates and crowds lithium.
The addition of other monodentate neutral donors such as tert-
butylpyridine or tert-butylcyanide to 4 produces the monometallic
13 P. C. Andrikopoulos, D. R. Armstrong, H. R. L. Barley, W. Clegg, S. H.
Dale, E. Hevia, G. W. Honeyman, A. R. Kennedy and R. E. Mulvey,
J. Am. Chem. Soc., 2005, 127, 6184.
4 D. R. Armstrong, W. Clegg, S. H. Dale, D. V. Graham, E. Hevia, L. M.
Hogg, G. W. Honeyman, A. R. Kennedy and R. E. Mulvey, Chem.
Commun., 2007, 598.
5 W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg, G. W. Honeyman, R. E.
Mulvey and C. T. O’Hara, Angew. Chem., Int. Ed., 2006, 45, 6548.
16 W. Clegg, S. H. Dale, R. W. Harrington, E. Hevia, G. W. Honeyman
1
1
and R. E. Mulvey, Angew. Chem., Int. Ed., 2006, 45, 2374.
7 D. R. Armstrong, W. Clegg, S. H. Dale, E. Hevia, L. M. Hogg,
1
G. W. Honeyman and R. E. Mulvey, Angew. Chem., Int. Ed., 2006, 45,
3
775.
18 In 2, this weaker interaction involves one of the methyl groups of the
t
Bu ligand and not its quaternary carbon, hence it can be considered an
t
t
intramolecular agostic contact. This type of interaction is frequently
found in structural organolithium chemistry: (a) K. W. Klinkhammer,
Chem.–Eur. J., 1997, 3, 1418; (b) W. Scherer, P. Sirsch, M. Grosche,
M. Spiegler, S. A. Mason and M. G. Gardiner, Chem. Commun., 2001,
compounds [( Bu-pyr)Li(HMDS)] (6) and [( BuCN)Li(HMDS)]
7) as the result of a disproportionation process.
(
2
072; (c) W. Scherer, P. Sirsch, D. Shorokhov, G. S. McGrady, S. A.
Acknowledgements
Mason and M. G. Gardiner, Chem.–Eur. J., 2002, 8, 2324.
9 D. V. Graham, E. Hevia, A. R. Kennedy and R. E. Mulvey,
Organometallics, 2006, 25, 3297.
1
We thank the EPSRC (DTA award to Emma Herd), the Royal
Society (University Research Fellowship to Eva Hevia) and the
Faculty of Science, University of Strathclyde (starter grant to Eva
Hevia) for their generous sponsorship of this research.
20 T. Harada, in Patai Series: The Chemistry of Organozinc Compounds,
Part 2, ed Z. Rappoport and I. Marek, Wiley, Chichester, 2006.
2
2
2
1 G. C. Forbes, A. R. Kennedy, R. E. Mulvey, R. B. Rowlings, W. Clegg,
S. T. Liddle and C. C. Wilson, Chem. Commun., 2000, 1759.
2 M. Westerhausen, B. Rademacher and W. Schwarz, Z. Anorg. Allg.
Chem., 1993, 619, 675.
3 D. Mootz, A. Zinnius and B. B o¨ ttcher, Angew. Chem., Int. Ed. Engl.,
1969, 8, 378.
Notes and references
1
2
J. A. Wanklyn, Liebigs Ann. Chem., 1858, 107, 125.
(a) T. Harada, K. Katsuhira, D. Hara, Y. Kotani, K. Maejima, R. Kaji
and A. Oku, J. Org. Chem., 1993, 58, 4897; (b) Y. Kondo, N. Takazawa,
C. Yamazaki and T. Sakamoto, J. Org. Chem., 1994, 59, 4717; (c) M.
Uchiyama, M. Koike, M. Kameda, Y. Kondo and T. Sakamoto, J. Am.
Chem. Soc., 1996, 118, 8733; (d) T. Harada, T. Katsuhira, A. Osada, K.
Iwazaki, K. Maejima and A. Oku, J. Am. Chem. Soc., 1996, 118, 11377;
24 P. R. Markies, G. Schat, O. S. Akkerman and F. Bickelhaupt,
Organometallics, 1990, 9, 2243.
25 When 4a was modelled as a dimer and as a trimer in both cases it adopts
a linear structure (see ESI§) where no agostic interactions between the
3
SiMe groups of the amide ligand are observed.
26 P. Andrikopoulos, D. R. Armstrong, A. R. Kennedy, R. E. Mulvey,
C. T. O’Hara, R. B. Rowlings and S. Weatherstone, Inorg. Chim. Acta,
2007, 360, 1370.
27 See for instance:(a) M. A. Putzer, B. Neumuller and K. Dehnicke,
Z. Anorg. Allg. Chem., 1997, 623, 539; (b) G. C. Forbes, A. R. Kennedy,
R. E. Mulvey and P. J. A. Rodger, Chem. Commun., 2001, 1400.
28 G. Margraf, H.-W. Lemer, M. Bolte and M. Wagner, Z. Anorg. Allg.
Chem., 2004, 630, 217.
(
e) Y. Kondo, M. Fujinami, M. Uchiyama and T. Sakamoto, J. Chem.
Soc., Perkin Trans. 1, 1997, 799; (f) F. F. Kneisel, M. Dochnahl and P.
Knochel, Angew. Chem., Int. Ed., 2004, 43, 1017.
3
4
For a recent comprehensive review of metallation reactions involving
zincates see: R. E. Mulvey, F. Mongin, M. Uchiyama and Y. Kondo,
Angew. Chem., Int. Ed., 2007, 46, 3802 and ref. therein.
(a) M. Uchiyama, M. Kameda, O. Mishima, N. Yokohama, M. Koike,
Y. Kondo and T. Sakamoto, J. Am. Chem. Soc., 1998, 120, 4934; (b) E.
Hevia, G. W. Honeyman, A. R. Kennedy and R. E. Mulvey, J. Am.
Chem. Soc., 2005, 127, 13106.
P. Knochel and P. Jones, in Organozinc Reagents: A Practical Approach,
ed. L. H. Harwood and C. J. Moody, Oxford University Press, Oxford,
29 P. O’Brien, M. B. Hursthouse, M. Montevalli and J. R. Walsh,
J. Organomet. Chem., 1993, 449, 1.
30 The Li–NPMDETA bond distances within 5 [2.132(2), 2.113(2) and 2.196
(2) A] are in the same range as those previously found for this ligand
˚
5
6
coordinated to lithium in a tridentate fashion, see for example: (a) U.
Schumann, J. Kopf and E. Weiss, Angew. Chem., Int. Ed. Engl., 1985,
24, 215; (b) D. Reed, D. Stalke and D. S. Wright, Angew. Chem., Int.
Ed. Engl., 1991, 30, 1459; (c) K. W. Henderson, A. E. DOrigo, Q.-L.
Liu and P. G. Williard, J. Am. Chem. Soc., 1997, 119, 11855; (d) P. C.
Andrews, M. Maguire and E. Pombo-Villar, Helv. Chim. Acta, 2002,
85, 3516; (e) M. G. Davidson, P. R. Raithby, A. L. Johnson and P. D.
Bolton, Eur. J. Inorg. Chem., 2003, 3445.
1
999.
This regioselective reagent has been recently characterised in solution
by NMR spectroscopy and in the solid-state by X-ray crystallographic
studies: (a) W. Clegg, S. H. Dale, E. Hevia, G. W. Honeyman and R. E.
Mulvey, Angew. Chem., Int. Ed., 2006, 45, 2370; (b) M. Uchiyama,
Y. Matsumoto, D. Nobuto, T. Furuyama, K. Yamaguchi and K.
Morokuma, J. Am. Chem. Soc., 2006, 128, 8748.
This journal is © The Royal Society of Chemistry 2008
Dalton Trans., 2008, 1323–1330 | 1329