2
304 Biochemistry, Vol. 49, No. 10, 2010
Lindberg et al.
2
4. Nakamura, T., Nagasawa, T., Yu, F., Watanabe, I., and Yamada, H.
1994) Purification and characterization of two epoxide hydrolases
from Corynebacterium sp. strain N-1074. Appl. Environ. Microbiol. 60,
630–4633.
40. Schiøtt, B., and Bruice, T. C. (2002) Reaction mechanism of soluble
epoxide hydrolase: insights from molecular dynamics simulations.
J. Am. Chem. Soc. 124, 14558–14570.
41. Schiøtt, B. (2004) Possible involvement of collective domain move-
ment in the catalytic reaction of soluble epoxide hydrolase. Int. J.
Quantum Chem. 99, 61–69.
42. Chen, C.-S., Fujimoto, Y., Girdaukas, G., and Sih, C. J. (1982)
Quantitative analyses of biochemical kinetic resolutions of enantio-
mers. J. Am. Chem. Soc. 104, 7294–7299.
43. Straathof, A. J. J., and Jongejan, J. A. (1997) The enantiomeric ratio:
origin, determination and prediction. Enzyme Microb. Technol. 21,
559–571.
(
4
2
5. Pedragosa-Moreau, S., Archelas., A., and Furstoss, R. (1994) Micro-
biological transformations. XXIX. Enantioselective hydrolysis of
epoxides using microorganisms: a mechanistic study. Bioorg. Med.
Chem. 2, 609–616.
2
2
2
6. Niehaus, W. G., and Schroepfer, G. J. (1967) Enzymic stereospecifi-
city in the hydration of epoxy fatty acids. Stereospecific incorporation
of the oxygen of water. J. Am. Chem. Soc. 89, 4227–4228.
7. Dietze, E. C., Kuwano, E., Casas, J., and Hammock, B. D. (1991)
Inhibition of cytosolic epoxide hydrolase by trans-3-phenylglycidols.
Biochem. Pharmacol. 42, 1163–1175.
8. Zhang, X. M., Archelas, A., and Furstoss, R. (1991) Microbial
transformations. 19. Asymmetric dihydroxylation of the remote
double bond of geraniol: a unique stereochemical control allowing
easy access to both enantiomers of geraniol-6,7-diol. J. Org. Chem. 56,
44. Segel, I. H. (1975) Enzyme kinetics, pp 658-659, John Wiley & Sons,
New York.
45. Masson, P., Schopfer, L. M., Froment, M.-T., Debouzy, J.-C.,
Nachon, F., Gillon, E., Lockridge, O., Hrabovska, A., and Goldstein,
B. N. (2005) Hysteresis of butyrylcholinesterase in the approach to
steady-state kinetics. Chem.-Biol. Interact. 157-158, 143–152.
46. Kim, Y. B., Kalinowski, S. S., and Marcinkeviciene, J. (2007) A pre-
steady state analysis of ligand binding to human glucokinase: evidence
for a preexisting equilibrium. Biochemistry 46, 1423–1431.
47. Neet, K. E., and Ainslie, G. R., Jr. (1980) Hysteretic enzymes.
Methods Enzymol. 64, 192–226.
3
814–3817.
2
9. Moussou, P., Archelas, A., and Furstoss, R. (1998) Microbiological
transformations 41: screening for novel fungal epoxide hydrolases.
J. Mol. Catal. B: Enzym. 5, 447–458.
3
3
3
0. Parker, R. E, and Isaacs, N. S. (1959) Mechanisms of epoxide
reactions. Chem. Rev. 59, 737–799.
1. Whalen, D. L. (2005) Mechanisms of hydrolysis and rearrangements
of epoxides. Adv. Phys. Org. Chem. 40, 247–298.
2. Arand, M., Cronin, A., Oesch, F., Mowbray, S. L., and Jones, T. A.
48. Frieden, C. (1979) Slow transitions and hysteretic behavior in en-
zymes. Annu. Rev. Biochem. 48, 471–489.
49. Lau, E. Y., Newby, Z. E., and Bruice, T. C. (2001) A theoretical
examination of the acid-catalyzed and noncatalyzed ring-opening
reaction of an oxirane by nucleophilic addition of acetate. Implica-
tions to epoxide hydrolases. J. Am. Chem. Soc. 123, 3350–3357.
50. Mowbray, S. L., Elfstr o€ m, L. T., Ahlgren, K. M., Andersson, C. E.,
and Widersten, M. (2006) X-ray structure of potato epoxide hydrolase
sheds light on substrate specificity in plant enzymes. Protein Sci. 15,
1628–1637.
(
3
2003) The telltale structures of epoxide hydrolases. Drug Metab. Rev.
5, 365–383.
3
3
3
3
3. Morisseau, C., Beetham, J. K., Pinot, F., Debernard, S., Newman, J.
W, and Hammock, B. D. (2000) Cress and potato soluble epoxide
hydrolases: purification, biochemical characterization, and compar-
ison to mammalian enzymes. Arch. Biochem. Biophys. 378, 321–332.
4. Cao, L., Lee, J., Chen, W., and Wood, T. K. (2006) Enantioconver-
gent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by
combining the Solanum tuberosum and an evolved Agrobacterium
radiobacter AD1 epoxide hydrolases. Biotechnol. Bioeng. 94, 522–529.
5. Sime oꢀ , Y., and Faber, K. (2006) Selectivity enhancement of enantio-
and stereo-complementary epoxide hydrolases and chemo-enzymatic
deracemization of (()-2-methylglycidyl benzyl ether. Tetrahedron:
Asymmetry 17, 402–409.
6. Manoj, K. M., Archelas, A., Baratti, J., and Furstoss, R. (2001)
Microbiological transformations. Part 45: A green chemistry pre-
parative scale synthesis of enantiopure building blocks of eliprodil:
elaboration of a high substrate concentration epoxide hydrolase-
catalyzed hydrolytic kinetic resolution process. Tetrahedron 57,
51. Hopmann, K. H., and Himo, F. (2006) Theoretical study of the full
reaction mechanism of human soluble epoxide hydrolase. Chem.;
Eur. J. 12, 6898–6909.
˚
52. Thomaeus, A., Carlsson, J., Aqvist, J., and Widersten, M. (2007)
Active site of epoxide hydrolases revisited: a noncanonical residue in
potato StEH1 promotes both formation and breakdown of the
alkylenzyme intermediate. Biochemistry 46, 2466–2479.
53. Phillips, R. S. (1992) Temperature effects on stereochemistry of
enzymatic reactions. Enzyme Microb. Technol. 14, 417–419.
54. Cainelli, G., Galletti, P., Giacomini, D., Gualandi, A., and Quinta-
valla, A. (2003) Chemo- and enzyme-catalyzed reactions revealing a
common temperature-dependent dynamic solvent effect on enantios-
electivity. Helv. Chim. Acta 86, 3548–3559.
6
95–701.
55. Hammes, G. G. (2002) Multiple conformational changes in enzyme
catalysis. Biochemistry 41, 8221–8228.
3
7. Monterde, M. I., Lombard, M., Archelas, A., Cronin, A., Arand, M.,
and Furstoss, R. (2004) Enzymatic transformations. Part 58: Enan-
tioconvergent biohydrolysis of styrene oxide derivatives catalysed by
the Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry
56. Agarwal, P. K. (2005) Role of protein dynamics in reaction rate
enhancement by enzymes. J. Am. Chem. Soc. 127, 15248–15256.
57. Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M.,
Wolf-Watz, M., Bosco, D. A., Skalicky, J. J., Kay, L. E., and Kern, D.
(2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature
438, 117–121.
58. Hammes-Schiffer, S., and Benkovic, S. J. (2006) Relating protein
motion to catalysis. Annu. Rev. Biochem. 75, 519–541.
59. Gerlt, J. A., and Babbitt, P. C. (2009) Enzyme (re)design: lessons from
natural evolution and computation. Curr. Opin. Chem. Biol. 13, 10–18.
60. Tokuriki, N., and Tawfik, D. S. (2009) Protein dynamism and
evolvability. Science 324, 203–207.
1
5, 2801–2805.
3
8. Chiappe, C., Leandri, E., Lucchesi, S., Pieraccini, D., Hammock,
B. D., and Morisseau, C. (2004) Biocatalysis in ionic liquids: the
stereoconvergent hydrolysis of trans-β-methylstyrene oxide catalyzed
by soluble epoxide hydrolase. J. Mol. Catal. B: Enzym. 27, 243–248.
9. Lotter, J., Botes, A. L., van Dyk, M. S., and Breytenbach, J. C. (2004)
Hydrolytic kinetic resolution of the enantiomers of the structural
isomers trans-1-phenylpropene oxide and (2,3-epoxypropyl)benzene
by yeast epoxide hydrolase. Biotechnol. Lett. 26, 1197–1200.
3