25. Bligh, E. G., and W. J. Dyer. 1959. A rapid method of total lipid
pool with distinct synthetic routes and functional properties. J. Biol.
Chem. 288: 13397–13409.
extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.
26. Saghatelian, A., M. K. McKinney, M. Bandell, A. Patapoutian, and
B. F. Cravatt. 2006. A faah-regulated class of n-acyl taurines that
activates trp ion channels. Biochemistry. 45: 9007–9015.
27. trapper (MassHunter converter). Sourceforge Sashimi Project file
sashimi/files.
28. Smith, C. A., E. J. Want, G. O'Maille, R. Abagyan, and G. Siuzdak.
2006. Xcms: Processing mass spectrometry data for metabolite pro-
filing using nonlinear peak alignment, matching, and identifica-
tion. Anal. Chem. 78: 779–787.
29. LMSD: LIPID MAPS structure database. Sud, M., E. Fahy, D. Cotter,
A. Brown, E. Dennis, C. Glass, R. Murphy, C. Raetz, D. Russell, and
S. Subramaniam. 2006. Nucleic Acids Res. 35: D527–32. Accessed
index.html.
30. Scripps Center for Metabolics. METLIN. Accessed February 20,
31. Kumar, G., S. Kaur, and V. Singh. 2011. Efficient synthesis of a styryl
analogue of (2s,3r,4e)-n2-octadecanoyl-4-tetradecasphingenine via
cross-metathesis reaction. Helv. Chim. Acta. 94: 650–655.
32. Ojima, I., and E. S. Vidal. 1998. Rhodium-catalyzed cyclohydrocar-
bonylation: Application to the synthesis of (+)-prosopinine and
(Ϫ)-deoxoprosophylline. J. Org. Chem. 63: 7999–8003.
33. The AOCS Lipid Library. Accessed February 20, 2015, at http://
lipidlibrary.aocs.org.
34. Futerman, A. H., and H. Riezman. 2005. The ins and outs of sphin-
golipid synthesis. Trends Cell Biol. 15: 312–318.
35. Hornemann, T., A. Penno, M. F. Rütti, D. Ernst, F. Kivrak-Pfiffner,
L. Rohrer, and A. von Eckardstein. 2009. The sptlc3 subunit of ser-
ine palmitoyltransferase generates short chain sphingoid bases. J.
Biol. Chem. 284: 26322–26330.
46. Danial, N. N., C. F. Gramm, L. Scorrano, C-Y. Zhang, S. Krauss, A. M.
Ranger, S. Robert Datta, M. E. Greenberg, L. J. Licklider, B. B. Lowell,
et al. 2003. Bad and glucokinase reside in a mitochondrial complex
that integrates glycolysis and apoptosis. Nature. 424: 952–956.
47. Paumen, M. B., Y. Ishida, H. Han, M. Muramatsu, Y. Eguchi, Y.
Tsujimoto, and T. Honjo. 1997. Direct interaction of the mitochon-
drial membrane protein carnitine palmitoyltransferase i with bcl-2.
Biochem. Biophys. Res. Commun. 231: 523–525.
48. Giordano, A., M. Calvani, O. Petillo, P. Grippo, F. Tuccillo, M. A. B.
Melone, P. Bonelli, A. Calarco, and G. Peluso. 2005. Tbid induces
alterations of mitochondrial fatty acid oxidation flux by malonyl-coa-
independent inhibition of carnitine palmitoyltransferase-1. Cell
Death Differ. 12: 603–613.
49. Pinton, P., and R. Rizzuto. 2006. Bcl-2 and Ca2+ homeostasis in the
endoplasmic reticulum. Cell Death Differ. 13: 1409–1418.
50. Danial, N. N., L. D. Walensky, C-Y. Zhang, C. S. Choi, J. K. Fisher,
A. J. A. Molina, S. R. Datta, K. L. Pitter, G. H. Bird, J. D. Wikstrom,
et al. 2008. Dual role of proapoptotic bad in insulin secretion and
beta cell survival. Nat. Med. 14: 144–153.
51. Karbowski, M., K. L. Norris, M. M. Cleland, S-Y. Jeong, and R. J.
Youle. 2006. Role of bax and bak in mitochondrial morphogenesis.
Nature. 443: 658–662.
52. Lee, H., J. A. Rotolo, J. Mesicek, T. Penate-Medina, A. Rimner,
W-C. Liao, X. Yin, G. Ragupathi, D. Ehleiter, E. Gulbins, et al. 2011.
Mitochondrial ceramide-rich macrodomains functionalize bax
upon irradiation. PLoS One. 6: e19783.
53. Stiban, J., D. Fistere, and M. Colombini. 2006. Dihydroceramide
hinders ceramide channel formation: Implications on apoptosis.
Apoptosis. 11: 773–780.
54. Hartmann, D., J. Lucks, S. Fuchs, S. Schiffmann, Y. Schreiber, N.
Ferreirós, J. Merkens, R. Marschalek, G. Geisslinger, and S. Grösch.
2012. Long chain ceramides and very long chain ceramides have
opposite effects on human breast and colon cancer cell growth. Int.
J. Biochem. Cell Biol. 44: 620–628.
55. Fyrst, H., X. Zhang, D. R. Herr, H. S. Byun, R. Bittman, V. H. Phan,
G. L. Harris, and J. D. Saba. 2008. Identification and characteriza-
tion by electrospray mass spectrometry of endogenous drosophila
sphingadienes. J. Lipid Res. 49: 597–606.
36. Valsecchi, M., L. Mauri, R. Casellato, S. Prioni, N. Loberto, A.
Prinetti, V. Chigorno, and S. Sonnino. 2007. Ceramide and sphin-
gomyelin species of fibroblasts and neurons in culture. J. Lipid Res.
48: 417–424.
37. Emrani, J. 2005. Lipid Analysis by HPLC. In Encyclopedia of
Chromatography, Volume 2. J. Cazes, editor. Taylor and Francis
Group, Boca Raton, FL. 960–964.
38. Saghatelian, A., S. A. Trauger, E. J. Want, E. G. Hawkins, G.
Siuzdak, and B. F. Cravatt. 2004. Assignment of endogenous sub-
strates to enzymes by global metabolite profiling. Biochemistry. 43:
14332–14339.
39. Yoo, H. H., J. Son, and D-H. Kim. 2006. Liquid chromatogra-
phy–tandem mass spectrometric determination of ceramides and
related lipid species in cellular extracts. J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 843: 327–333.
40. Colsch, B., C. Afonso, I. Popa, J. Portoukalian, F. Fournier, J-C.
Tabet, and N. Baumann. 2004. Characterization of the ceramide
moieties of sphingoglycolipids from mouse brain by esi-ms/ms:
Identification of ceramides containing sphingadienine. J. Lipid Res.
45: 281–286.
41. Lee, M. H., G. H. Lee, and J. S. Yoo. 2003. Analysis of ceramides in
cosmetics by reversed-phase liquid chromatography/electrospray
ionization mass spectrometry with collision-induced dissociation.
Rapid Commun. Mass Spectrom. 17: 64–75.
42. Kelley, D. S., G. L. Bartolini, J. W. Newman, M. Vemuri, and
B. E. Mackey. 2006. Fatty acid composition of liver, adipose tissue,
spleen, and heart of mice fed diets containing t10, c12-, and c9,
t11-conjugated linoleic acid. Prostaglandins Leukot. Essent. Fatty Acids
74: 331–338.
43. Polito, A. J., T. Akita, and C. C. Sweeley. 1968. Gas chromatography
and mass spectrometry of sphingolipid bases: Characterization of
sphinga-4,14-dienine from plasma sphingomyelin. Biochemistry. 7:
2609–2614.
44. Renkonen, O., and E. L. Hirvisalo. 1969. Structure of plasma sphin-
gadienine. J. Lipid Res. 10: 687–693.
45. Russo, S. B., R. Tidhar, A. H. Futerman, and L. A. Cowart. 2013.
Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid
56. Lynch, D. V., and T. M. Dunn. 2004. An introduction to plant
sphingolipids and a review of recent advances in understanding
their metabolism and function. New Phytol. 161: 677–702.
57. Merrill, A. H., Jr. 1983. Characterization of serine palmitoyltrans-
ferase activity in chinese hamster ovary cells. Biochim. Biophys. Acta.
754: 284–291.
58. Williams, R. D., E. Wang, and A. H. Merrill, Jr. 1984. Enzymology of
long-chain base synthesis by liver: Characterization of serine palmi-
toyltransferase in rat liver microsomes. Arch. Biochem. Biophys. 228:
282–291.
59. Farwanah, H., B. Pierstorff, C. E. H. Schmelzer, K. Raith, R. H. H.
Neubert, T. Kolter, and K. Sandhoff. 2007. Separation and mass
spectrometric characterization of covalently bound skin cerami-
des using lc/apci-ms and nano-esi-ms/ms. J. Chromatogr. B Analyt.
Technol. Biomed. Life Sci. 852: 562–570.
60. Han, X. 2002. Characterization and direct quantitation of ceramide
molecular species from lipid extracts of biological samples by elec-
trospray ionization tandem mass spectrometry. Anal. Biochem. 302:
199–212.
61. Hsu, F-F., J. Turk, M. Stewart, and D. Downing. 2002. Structural
studies on ceramides as lithiated adducts by low energy collisional-
activated dissociation tandem mass spectrometry with electrospray
ionization. J. Am. Soc. Mass Spectrom. 13: 680–695.
62. Hsu, F. F., and J. Turk. 2002. Characterization of ceramides by low
energy collisional-activated dissociation tandem mass spectrometry
with negative-ion electrospray ionization. J. Am. Soc. Mass Spectrom.
13: 558–570.
63. Ann, Q., and J. Adams. 1993. Structure-specific collision-induced
fragmentations of ceramides cationized with alkali-metal ions.
Anal. Chem. 65: 7–13.
1510
Journal of Lipid Research Volume 56, 2015