10.1002/ejic.201800564
European Journal of Inorganic Chemistry
FULL PAPER
[6] a) C. Gemel, T. Steinke, M. Cokoja, A. Kempter, R. A. Fischer, Eur. J.
Inorg. Chem. 2004, 2004, 4161-4176; b) S. Nagendran, H. W. Roesky,
Organometallics 2008, 27, 457-492; c) R. J. Wehmschulte, in Modern
Organoaluminum Reagents, Vol. 41 (Eds.: S. Woodward, S. Dagorne),
Springer, Heidelberg, 2012, pp. 91-124; d) C. Dohmeier, D. Loos, H.
Schnöckel, Angew. Chem. Int. Ed. 1996, 35, 129-149; Angew. Chem.
1996, 108, 141-161; e) S. Gonzalez-Gallardo, T. Bollermann, R. A.
Fischer, R. Murugavel, Chem. Rev. (Washington, DC, U. S.) 2012, 112,
3136-3170; f) C. Jones, A. Stasch, in The Group 13 Metals Aluminium,
Gallium, Indium and Thallium: Chemical Patterns and Peculiarities, John
Wiley & Sons, Ltd, 2011, pp. 285-341; g) H. W. Roesky, S. S. Kumar,
Chem. Commun. 2005, 4027-4038; h) L. O. Schebaum, P. Jutzi, in Group
13 Chemistry, Vol. 822, American Chemical Society, 2002, pp. 16-30; i)
M. J. Cowley, S. J. Urwin, G. S. Nichol, Chem. Comm. 2018, 54, 378-380.
[7] S. Schulz, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, J. Organomet.
Chem. 1995, 493, 69-75.
Synthesis of [Al7(OH)9{(OSiiPr2)2O}6] (6)
10mL toluene and 0.1 mL THF were added to a mixture of [Cp*Al]4
(65 mg, 0.10 mmol) and iPr2Si(OH)(µ-O)Si(OH)iPr2 (96 mg,
0.34 mmol) in a Schlenk flask. Then H2O (10 µL, 0.56 mmol) was
added and the reaction solution was stirred at 95 °C for 48 hours.
Afterwards all volatiles were removed in vacuo and the colorless
solid was washed two times with 2 mL of cold pentane. After drying
in vacuo, [Al7(OH)9{(OSiiPr2)2O}6] (6) was obtained as a colorless
solid (81 mg, 0.040 mmol, 71% yield). Colorless crystals of 6·toluene
suitable for XRD were obtained by storing a saturated toluene
solution of 6 in the freezer (-26 °C) for 3 days. Colorless crystals of
6·(H2O· THF)1.5 suitable for XRD were obtained by dissolving 6 in a
wet THF solution and slow evaporation at ambient conditions.
1H NMR (400.1 MHz, [D8]THF, 25 °C): = 7.87 (s, 3 H, OH), 5.55 (s,
6 H, OH), 1.21-0.79 (m, iPr) ppm; 13C NMR (75.5 MHz, [D8]THF, 25
°C): = 19.6, 19.4, 19.1, 19.0, 18.9, 18.6, 18.6, 18.4, 16.6, 16.4,
15.7, 15.3 ppm; 27Al{1H} NMR (104.3 MHz, [D8]THF, 25 °C): = 5.2
( ≈ 15 Hz, central Al(OH)6 unit) ppm; 29Si NMR (79.5 MHz, [D8]THF,
50 °C): = -23.0, -24.6 ppm; 27Al MAS NMR (104.3 MHz, neat, 25
°C, rot = 25 kHz): = 61.7 (Q = 1.175 MHz, Q = 1.00), 5.3 ppm; IR
(neat, ATR/Diamond) ν̃ = 3560-2850 (br, OH), 2943 (m), 2891 (m),
2865 (m), 1463 (m), 1385 (w), 1365 (w), 1245 (w), 1162 (w), 1085
(m), 1033 (s), 985 (s), 884 (s), 717 (m), 692 (s), 642 (m), 609 (m),
502 (m), 462 (m), 441 (m), 405 (m) cm-1; ESI-MS: m/z (%) = 1999.85
(100) [M-H]; elemental analysis calcd (%) for C72H177Al7O27Si12: C
43.22, H 8.92; found: C 43.88, H 8.95.
[8] H. Zhu, J. Chai, V. Jancik, H. W. Roesky, W. A. Merrill, P. P. Power, J.
Am. Chem. Soc. 2005, 127, 10170-10171.
[9] T. Chu, I. Korobkov, G. I. Nikonov, J. Am. Chem. Soc. 2014, 136, 9195-
9202.
[10] a) R. Duchateau, Chem. Rev. 2002, 102, 3525-3542; b) F. J. Feher, D.
A. Newman, J. F. Walzer, J. Am. Chem. Soc. 1989, 111, 1741-1748; c) F.
T. Edelmann, Y. K. Gun'ko, S. Giessmann, F. Olbrich, K. Jacob, Inorg.
Chem. 1999, 38, 210-211; d) D. A. Atwood, M. J. Harvey, Chem. Rev.
2001, 101, 37-52; e) R. Murugavel, A. Voigt, M. G. Walawalkar, H. W.
Roesky, Chem. Rev. 1996, 96, 2205-2236; f) M. R. Mason, J. M. Smith,
S. G. Bott, A. R. Barron, J. Am. Chem. Soc. 1993, 115, 4971-4984; g) C.
G. Lugmair, K. L. Fujdala, T. D. Tilley, Chem. Mater. 2002, 14, 888-898.
[11] S. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn,
Angew. Chem. Int. Ed. 1993, 32, 1729-1731; Angew. Chem. 1993, 105,
1828-1830.
[12] a) J. Lewinski, in Encyclopedia of spectroscopy & spectrometry (Ed.: J. C.
Lindon), Academic Press, Cambridge, UK, 1999, pp. 691-703; b) M.
Schormann, K. S. Klimek, H. Hatop, S. P. Varkey, H. W. Roesky, C.
Lehmann, C. Röpken, R. Herbst-Irmer, M. Noltemeyer, J. Solid State
Chem. 2001, 162, 225-236.
[13] J. W. Akitt, Prog. Nucl. Magn. Reson. Spectrosc. 1989, 21, 1-149.
[14] M. I. Zaki, M. A. Hasan, F. A. Al-Sagheer, L. Pasupulety, Colloids and
Surfaces A: Physicochemical and Engineering Aspects 2001, 190, 261-
274.
Acknowledgements
[15] a) W. Bury, E. Chwojnowska, I. Justyniak, J. Lewinski, A. Affek, E.
Zygadlo-Monikowska, J. Bak, Z. Florjanczyk, Inorg. Chem. 2012, 51, 737-
745; b) I. Aiello, D. Aiello, M. Ghedini, J. Coord. Chem. 2009, 62, 3351-
3365; c) W. A. Chomitz, S. G. Minasian, A. D. Sutton, J. Arnold, Inorg.
Chem. 2007, 46, 7199-7209; d) J. Lewiński, I. Justyniak, J. Zachara, E.
Tratkiewicz, Organometallics 2003, 22, 4151-4157; e) M. L. Cole, P. C.
Junk, Dalton Trans. 2003, 2109-2111.
We thank Dr. I. Pryjomska-Ray for ESI-MS measurements and
Dr. G. Scholz for MAS NMR measurements and helpful
discussions. We gratefully acknowledge the Collaborative
Research Centre SFB 1109 funded by the Deutsche
Forschungsgemeinschaft (DFG) for financial support.
[16] K. S. Lokare, P. Wittwer, B. Braun-Cula, N. Frank, S. Hoof, T. Braun, C.
Limberg, Z. Anorg. Allg. Chem. 2017, 643, 1581-1588.
[17] A. W. Apblett, A. C. Warren, A. R. Barron, Can. J. Chem. 1992, 70, 771-
778.
[18] P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral
Interpretation, Elsevier, USA, 2011.
Keywords: aluminates • Cp*Al • hydrolysis • alumosiloxanes •
silanols •
[19] G. Davidson, Spectroscopic Properties of Inorganic and Organometallic
Compounds 2006, 38, 189-240.
[20] Y. I. Smolin, Y. F. Shepelev, A. S. Ershov, D. Hoebbel, Doklady Akademii
Nauk SSSR 1987, 297, 1377-1380.
[21] a) P. J. Byrne, D. S. Wragg, J. E. Warren, R. E. Morris, Dalton Trans.
2009, 0, 795-799; b) A. Kraft, J. Possart, H. Scherer, J. Beck, D. Himmel,
I. Krossing, Eur. J. Inorg. Chem. 2013, 2013, 3054-3062; c) M. Veith, D.
Kolano, T. Kirs, V. Huch, J. Organomet. Chem. 2010, 695, 1074-1079.
[22] A. Okuniewski, D. Rosiak, J. Chojnacki, B. Becker, Polyhedron 2015, 90,
47-57.
[23] W. Loewenstein, Am. Mineral. 1954, 39, 92-96.
[24] J. R. Rustad, J. S. Loring, W. H. Casey, Geochim. Cosmochim. Acta
2004, 68, 3011-3017.
[25] Z. Chen, Z. Luan, Z. Jia, X. Li, J. Mater. Sci. 2009, 44, 3098-3111.
[26] C. Ganesamoorthy, S. Loerke, C. Gemel, P. Jerabek, M. Winter, G.
Frenking, R. A. Fischer, Chem. Commun. 2013, 49, 2858.
[27] J. A. Cella, J. C. Carpenter, J. Organomet. Chem. 1994, 480, 23.
[28] D. Massiot et al., Magn. Reson. Chem. 2002, 40, 70.
[29] G. M. Sheldrick, SADABS, University of Göttingen, Göttingen, Germany,
2001.
[1] a) B. Yilmaz, U. Müller, Top. Catal. 2009, 52, 888-895; b) A. Corma,
Chem. Rev. (Washington, DC, U. S.) 1995, 95, 559-614; c) A. Corma, J.
Catal. 2003, 216, 298-312; d) J. Čejka, G. Centi, J. Perez-Pariente, W. J.
Roth, Catal. Today 2012, 179, 2-15; e) M. E. Davis, Ind. Eng. Chem. Res.
1991, 30, 1675-1683; f) M. E. Davis, R. F. Lobo, Chem. Mater. 1992, 4,
756-768; g) P. Tian, Y. Wei, M. Ye, Z. Liu, ACS Catal. 2015, 5, 1922-
1938; h) G. Busca, Chem. Rev. (Washington, DC, U. S.) 2007, 107, 5366-
5410.
[2] a) M. Veith, J. Frères, V. Huch, M. Zimmer, Organometallics 2006, 25,
1875-1880; b) M. Veith, H. Hreleva-Caparrotti, F. Sahin, V. Huch, Z.
Anorg. Allg. Chem. 2014, 640, 863-867; c) M. Veith, M. Jarczyk, V. Huch,
Angew. Chem. Int. Ed. 1997, 36, 117-119; Angew. Chem. 1997, 109,
140-142; d) M. Veith, M. Jarczyk, V. Huch, Phosphorus, Sulfur Silicon
Relat. Elem. 1997, 124, 213-222; e) M. Veith, F. Şahin, A. Rammo, V.
Huch, C. R. Chim. 2009, 12, 1181-1188.
[3] K. S. Lokare, N. Frank, B. Braun-Cula, I. Goikoetxea, J. Sauer, C.
Limberg, Angew. Chem. Int. Ed. 2016, 55, 12325-12329; Angew. Chem.
2016, 128, 12513-12517.
[4] A. W. Apblett, A. C. Warren, A. R. Barron, Chem. Mater. 1992, 4, 167-
182.
[30] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3.
[31] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44,
1281.
[5] A. C. Stelzer, P. Hrobarik, T. Braun, M. Kaupp, B. Braun-Cula, Inorg.
Chem. 2016, 55, 4915-4923.
This article is protected by copyright. All rights reserved.