NMR of the unreacted monomers in the filtrate which showed
a 15:85 ratio of 1+2, indicating that the co-polymer is rich in
uridine.
In summary it has been shown that copper( ) mediated radical
I
polymerisation of the multifunctional nucleosides uridine and
adenosine methacrylates is possible using a bromoisobutyrate
initiator bound to silica giving surface attached homopolymers
and statistical co-polymers with good loading. Although we
cannot unequivocably describe this polymerisation as living
from these experiments, we know that similar conditions bring
about a controlled polymerisation. Other work has shown22 that
these conditions favour narrow polydispersity products, indica-
tive of a living radical polymerisation.23 To our knowledge this
is the first time controlled radical polymerisation has been used
to immobilise biologically important nucleosides to a solid
support. Investigations into the use of these immobilised
biopolymers as re-usable templates for polymerisations and
their interaction with nucleic acids are under way.
Scheme 2 Copper(I) mediated radical polymerisation of 5’-methacryl-
oylnucleosides.
We are grateful to the University of Warwick for a
postdoctoral fellowship (A. K.), the EPSRC for a Fast Stream
Studentship (M.G.; GR/L71933) and Novo Nordisk for a
generous donation of CAL 435. We also thank Dr Stefan Bon
for supplying the amidic solid supported initiator 3.
Table 1 Monomer loading for initiators 3 and 4
Increase in
initiator
weight(%)
Loading
Initiator
Monomer
Ligand
(mmol g21
)
3
3
4
4
4
1
1
1
2
NPMI
Me6Tren
NPMI
NPMI
NPMI
0.87
0.80
1.51
1.11
1.04
53
48
188
117
105
Notes and references
1 M. Mrksich and G. M. Whitesides, Ann. Rev. Biophys. Biomol. Struct.,
1996, 25, 55.
2 Sensors: a Comprehensive Survey, ed. W. Göpel, J. Hesse and J. N.
Zemel, VCH, Weinheim, 1991, vols. 2 and 3.
1/2
3 B. Yan, Acc. Chem. Res., 1998, 31, 621; A. G. M. Barrett, S. M. Cramp
and R. S. Roberts, Org. Lett., 1999, 1, 1083.
4 M. H. Caruthers, Science, 1985, 230, 281; S. Iwai, T. Sasaki and E.
Ohtsuka, Tetrahedron, 1990, 46, 6673.
5 P. O. Brown and D. Botstein, Nat. Genet., 1999, 21, 33 (supplement).
6 M. J. O’Donnell-Maloney, C. L. Smith and C. R. Cantor, Trends
Biotechnol., 1996, 14, 401.
7 P. L. Ashley and R. J. Macdonald, Anal. Biochem., 1984, 140, 95.
8 A. Khan, D. M. Haddleton, M. J. Hannon, D. Kukulj and A. Marsh,
Macromolecules, 1999, 32, 6560.
9 M. Kato, M. Kamigaito, M. Sawamoto and T. Higashimura, Macromol-
ecules, 1995, 28, 1721; J. S. Wang and K. Matyjaszewski, J. Am. Chem.
Soc., 1995, 117, 5614.
10 M. Sawamoto and M. Kamigaito, Trends Polym. Sci., 1996, 4, 371; T.
E. Patten and K. Matyjaszewski, Acc. Chem. Res., 1999, 32, 89.
11 O. W. Webster, Science, 1991, 251, 887.
12 M. Ejaz, S. Yamamoto, K. Ohno, Y. Tsujii and T. Fukuda, Macromole-
cules, 1998, 31, 5934.
13 K. Matyjaszewski, P. J. Miller, N. Shukla, B. Immaraporn, A. Gelman,
B. B. Luokala, T. M. Siclovan, G. Kickelbick, T. Vallant, H. Hoffmann
and T. Pakula, Macromolecules, 1999, 32, 8716.
lower loading of 0.80 mmol g21. It has been suggested by
Matyjaszewski that amidic initiators are prone to intramolecular
reactions in the early stages of living radical polymerisation
caused by the nitrogen lone pair.21 The non-amidic solid
supported initiator 4 was therefore synthesised. Use of this
initiator for polymerisation of 1 almost doubled the loading to
1.51 mmol g21 using NPMI as the ligand. Fig. 2 shows the FT-
IR of the immobilised polymer clearly demonstrating the broad
N–H signal from 3700–2900 cm21 and the carbonyl stretch at
1683 cm21. Polymerisation of 5A-methacryloyladenosine 2
using initiator 4 gave a lower loading of 0.96 mmol g21. This
reflects the lower yields obtained with this functionally more
complex monomer during solution phase copper( ) mediated
radical polymerisations (see ref. 16). Statistical co-polymer-
I
isation of 1 and 2 was also successful giving a loading of 1.04
1
mmol g21. This was calculated by taking into account the H
14 J. C. Hodges, L. S. Harikrishnan and S. Ault-Justus, J. Comb. Chem.,
2000, 2, 80.
15 F. Moris and V. Gotor, J. Org. Chem., 1993, 58, 653.
16 A. Marsh, A. Khan, D. M. Haddleton and M. J. Hannon, Macromole-
cules, 1999, 32, 8725.
17 R. T. Arnold and S. T. Kulenovic, J. Org. Chem., 1978, 43, 3687.
18 F. Effenberger and S. Heid, Synthesis, 1995, 1126.
19 G. Kickelbick, H. J. Paik and K. Matyjaszewski, Macromolecules, 1999,
32, 2941.
20 N, NA, NB-Hexamethyl tris(2-aminoethyl)amine: M. Ciampolini and N.
Nardi, Inorg. Chem., 1966, 5, 41.
21 M. Teodorescu and K. Matyjaszewski, Macromolecules, 1999, 32,
4826.
22 S. Angot, S. A. F. Bon, N. Ayres and D. M. Haddleton, Macromole-
cules, submitted.
23 T. R. Darling, T. P. Davis, M. Fryd, A. A. Gridnev, D. M. Haddleton, S.
D. Ittell, R. R. Matheson, G. Moad and E. Rizzardo, J. Polym. Sci. Part
A - Polym. Chem., 2000, 38, 1706.
Fig. 2 IR of poly(5A-methacryloyluridine) on silica.
2084
Chem. Commun., 2000, 2083–2084