5992
T. Mino et al. / Tetrahedron 71 (2015) 5985e5993
chromatography (hexaneeEtOAc¼4:1) to separate the di-
astereomeric mixture and recrystallization from hexaneeCHCl3 to
afford (aS)-1b$(S)-5: 23.0 mg, 0.033 mmol, 16%, 94% de; mp
1.170 mmꢂ1. The structure was solved by the direct method of full-
matrix leastesquares, where the final R and Rw were 0.0419 and
0.0900 for 3101 reflections.
114e116 ꢀC; [
a]
20 ꢂ68.6 (c 0.51, CHCl3); 1H NMR (300 MHz, CDCl3)
D
d
1.45 (s, 3H),1.54 (s, 9H), 2.00 (d, J¼6.5 Hz, 3H), 2.28 (s, 3H), 2.78 (d,
4.16. Elucidation of the thermal racemization of optically
active 1
J¼1.3 Hz, 3H), 2.97 (d, J¼3.5 Hz, 3H), 4.33 (quin, J¼6.4 Hz, 1H), 6.58
(dd, J¼6.2 and 8.6 Hz, 1H), 6.87 (d, J¼8.6 Hz, 1H), 7.01 (dt, J¼1.8 and
7.7 Hz, 1H), 7.16e7.46 (m, 11H), 7.59e7.72 (m, 4H), 8.58 (br-s, 1H);
A small amount of optically active (aS)-1 or (aR)-1 was dissolved
in nonane at room temperature. The solution was kept at a constant
temperature in a thermostat oil bath, a small portion removed
every passage of times, and the transitions of enantiomeric excess
were measured by chiral HPLC analysis.
13C NMR (125 MHz, CDCl3)
d
21.4, 22.0, 30.8ꢃ3, 33.4, 48.0, 51.3 (d,
Jcp¼2.4 Hz), 57.7, 73.5 (d, Jcp¼3.3 Hz), 123.3ꢃ2, 123.5 (d, Jcp¼6.0 Hz),
123.9ꢃ2, 124.4 (d, Jcp¼10.7 Hz), 125.5, 127.2ꢃ2 (d, Jcp¼10.4 Hz),
128.3 (d, Jcp¼9.5 Hz), 128.6ꢃ2, 128.8, 129.0, 129.9 (d, Jcp¼2.4 Hz),
130.1 (d, Jcp¼2.1 Hz), 131.1, 132.0 (d, Jcp¼40.6 Hz), 133.6 (d,
Jcp¼41.7 Hz), 134.3ꢃ2 (d, Jcp¼2.1 Hz), 134.4 (d, Jcp¼8.4 Hz), 137.3 (d,
Jcp¼10.7 Hz), 138.5 (d, Jcp¼56.3 Hz), 140.7 (d, Jcp¼6.0 Hz), 147.9,
149.9 (d, Jcp¼2.1 Hz), 151.9 (d, Jcp¼7.2 Hz); 31P NMR (121 MHz,
4.17. Preparation of palladium complex ( )-6
To a solution of PdCl2(MeCN)2 (18.1 mg, 0.05 mmol) in a CHCl3
(4.0 mL) was added (ꢁ)-1c (19.7 mg, 0.05 mmol) at room temper-
ature and stirred for 24 h. The reaction mixture was filtered and
evaporated under reduced pressure. The residue was purified by
recrystallization from hexaneeCHCl3 to afford palladium complex
(ꢁ)-6: 25.4 mg, 0.044 mmol, 88%; mp 174e176 ꢀC; 1H NMR
CDCl3) d 39.2; HRMS (ESI-orbitrap) m/z calcd for C38H44N2ClPPdeCl
665.2271, found 665.2272; X-ray diffraction analysis data: Yellow
Prismatic crystals from hexaneeCHCl3, hexagonal space group P65,
ꢀ
ꢀ
ꢀ
a¼13.1253(4) A, b¼13.1253(4) A, c¼33.8217(11) A,
a
¼90ꢀ,
b
¼90ꢀ,
3
ꢀ
g
¼120ꢀ, V¼5046.0(3) A , Z¼6,
r
¼1.385 g/cm3,
m
(MoK
a
)¼
0.708 mmꢂ1. The structure was solved by the direct method of full-
matrix leastesquares, where the final R and Rw were 0.0225 and
0.0540 for 6828 reflections.
(300 MHz, CDCl3)
(d, J¼8.3 Hz, 1H), 7.93e7.97 (m, 1H), 8.18 (dd, J¼4.9 and 12.0 Hz,
2H), 8.49e8.52 (m, 1H); 13C NMR (75 MHz, CDCl3)
d 1.65 (s, 9H), 4.64 (s, 3H), 7.21e7.67 (m,11H), 7.83
d
31.8, 51.2ꢃ3,
71.3, 125.9 (d, Jcp¼58.6 Hz), 127.0, 127.7, 128.2, 128.4 (d, Jcp¼3.0 Hz),
128.7, 128.8, 129.3ꢃ2 (d, Jcp¼11.5 Hz), 130.0, 130.1, 130.4 (d,
Jcp¼20.6 Hz), 131.0, 131.3 (d, Jcp¼7.3 Hz), 131.8 (d, Jcp¼3.0 Hz), 132.4
(d, Jcp¼3.0 Hz), 133.7ꢃ2 (d, Jcp¼8.9 Hz), 133.8, 133.9, 137.7, 155.1 (d,
4.15. Optical resolution of ( )-1c (Scheme 3)
HPLC resolution of (ꢁ)-1c (20.0 mg, 0.050 mmol) dissolved in
hexane (4 mL) was carried out by successive injections of 1 mL on
Jcp¼14.3 Hz); 31P NMR (121 MHz, CDCl3)
d 37.6; HRMS (ESI-orbi-
trap) m/z calcd for C27H28NCl2PPdeCl 538.0677, found 538.0679; X-
a CHIRALCELÒ OJ (1.0
working at a flow rate of 0.5 mL/min and with UV monitoring at
254 nm. Enantiomerically pure (S)-(þ)-1c and (R)-(ꢂ)-1c were,
respectively, obtained by evaporation of fractions.
f
ꢃ25 cm). A hexane was used as the eluent
ray diffraction analysis data: Yellow Prismatic crystals from hex-
ꢀ
aneeCHCl3, Triclinic space group P-1, a¼9.1121(4) A,
ꢀ
ꢀ
b¼11.5775(5) A, c¼17.0169(7) A,
a
¼81.1510(10)ꢀ,
b
¼89.4900(10)ꢀ,
3
¼70.9870(10)ꢀ, V¼1675.43(12) A , Z¼2,
r
¼1.613 Mg/m3,
m
ꢀ
(aS)-(þ)-1c: 10.0 mg, 0.025 mmol, 50%, >99% ee; mp
g
133e135 ꢀC; [
a
]
20 þ245.2 (c 0.5, CHCl3); 1H NMR (300 MHz, CDCl3)
(MoK
a
)¼10.958 mmꢂ1. The structure was solved by the direct
D
d
1.35 (s, 9H), 2.52 (s, 3H), 7.03 (dd, J¼8.5 and 2.5 Hz, 1H), 7.25e7.33
method of full-matrix leastesquares, where the final R and Rw were
0.0604 and 0.1670 for 25,498 reflections.
(m, 10H), 7.42e7.49 (m, 2H), 7.57 (d, J¼8.5 Hz, 1H), 7.79e7.83 (m,
1H), 8.07e8.10 (m, 1H); 13C NMR (75 MHz, CDCl3)
d
28.8ꢃ3 (d,
Jcp¼6.3 Hz), 36.0 (d, Jcp¼3.3 Hz), 56.0, 125.4, 125.9, 125.98, 126.01,
126.1, 127.9, 128.2 (d, Jcp¼7.3 Hz), 128.37ꢃ2 (d, Jcp¼1.5 Hz),
128.42ꢃ2 (d, Jcp¼1.0 Hz), 130.2, 133.5ꢃ2 (d, Jcp¼19.8 Hz), 134.3ꢃ2
(d, Jcp¼21.3 Hz), 134.9 (d, Jcp¼2.5 Hz), 135.4, 138.6 (d, Jcp¼13.9 Hz),
139.4 (d, Jcp¼16.3 Hz), 139.7 (d, Jcp¼3.3 Hz), 152.4 (d, Jcp¼24.0 Hz);
4.18. General procedure for the palladium-catalyzed allylic
alkylation
To a mixture of [Pd(
aminophosphine ligand 1 (8.0
h
3-C3H5)Cl]2 (1.47 mg, 4.0
mol), and LiOAc (1.3 mg, 20
m
mol), chiral
mol)
m
m
31P NMR (121 MHz, CDCl3)
d
ꢂ12.2; EI-MS m/z (rel intensity) 397
in a solvent (0.4 mL) was added BSA (0.15 mL, 0.60 mmol) and ra-
cemic allylic ester 7 (0.20 mmol) at room temperature under an Ar
atmosphere. After 10 min, malonate 8 (0.6 mmol) was added at 0 or
ꢂ10 ꢀC. After 24 or 48 h, the reaction mixture was diluted with
ether and water. The organic layer was washed with brine and dried
over MgSO4. The filtrate was concentrated with a rotary evaporator
and the residue was purified by column chromatography.
(Mþ, 43); HRMS (ESI-orbitrap) m/z calcd for C27H28NPþH 398.2032,
found 398.2026; HPLC (Daicel CHIRALCELÒ OJ 0.46
fꢃ25ꢃ2, UV
254 nm), hexaneeEtOH¼95:5, 0.5 mL/min: tR¼17.1 min (minor)
and 24.8 min (major).
(aR)-(ꢂ)-1c: 9.7 mg, 0.025 mmol, 49%, >99% ee; mp 109e110 ꢀC;
[
a]
20 ꢂ242.2 (c 0.5, CHCl3); 1H NMR (300 MHz, CDCl3)
d 1.35 (s, 9H),
D
2.51 (s, 3H), 7.03 (dd, J¼8.4 and 2.6 Hz, 1H), 7.24e7.33 (m, 10H),
7.42e7.48 (m, 2H), 7.57 (d, J¼8.5 Hz, 1H), 7.79e7.83 (m, 1H),
4.18.1. (S)-9a (Table 1, entry 5).13 62.0 mg, 0.191 mmol, 96%, 90.2%
20
8.07e8.10 (m, 1H); 13C NMR (75 MHz, CDCl3)
d
28.8ꢃ3 (d,
ee; [
a]
ꢂ19.3 (c 0.5, CHCl3); 1H NMR (300 MHz, CDCl3)
d 3.52 (s,
D
Jcp¼6.3 Hz), 36.0 (d, Jcp¼3.3 Hz), 56.0, 125.4, 125.9, 125.98, 126.01,
126.1, 127.9, 128.2 (d, Jcp¼7.3 Hz), 128.37ꢃ2 (d, Jcp¼1.5 Hz),
128.42ꢃ2 (d, Jcp¼1.0 Hz), 130.2, 133.5ꢃ2 (d, Jcp¼19.8 Hz), 134.3ꢃ2
(d, Jcp¼21.3 Hz), 134.9 (d, Jcp¼2.5 Hz), 135.4, 138.6 (d, Jcp¼13.9 Hz),
139.4 (d, Jcp¼16.3 Hz), 139.7 (d, Jcp¼3.3 Hz), 152.4 (d, Jcp¼24.0 Hz);
3H), 3.71 (s, 3H), 3.96 (d, J¼10.9 Hz,1H), 4.27 (dd, J¼8.5 and 10.9 Hz,
1H), 6.33 (dd, J¼8.5 and 15.7 Hz, 1H), 6.48 (d, J¼15.8 Hz, 1H),
7.20e7.33 (m,10H); 13C NMR (75 MHz, CDCl3)
d 49.1, 52.4, 52.6, 57.6,
126.4, 127.1, 127.5, 127.8, 128.4, 128.7, 129.0, 131.8, 136.8, 140.1, 167.8,
168.2; EI-MS m/z (rel intensity) 324 (Mþ, 18); HPLC (Daicel
31P NMR (121 MHz, CDCl3)
d
ꢂ12.2; EI-MS m/z (rel intensity) 397
CHIRALPAKÒ AD-H, 0.46
f
ꢃ25 cm, UV 254 nm), hexanee2-
(Mþ, 30); HRMS (ESI-orbitrap) m/z calcd for C27H28NPþH 398.2032,
propanol¼90:10, 0.5 mL/min: tR¼31.2 min (minor) and 35.3 min
found 398.2025; HPLC (Daicel CHIRALCELÒ OJ 0.46
fꢃ25ꢃ2, UV
(major).
254 nm), hexaneeEtOH¼95:5, 0.5 mL/min: tR¼12.4 min (major)
and 17.8 min (minor); X-ray diffraction analysis data: Colorless
Plate crystals from hexaneeCHCl3, orthorhombic space group
4.18.2. (S)-9b (Table 1, entry 12).13 62.8 mg, 0.178 mmol, 89%, 95%
ee; [
a
]
20 ꢂ19.2 (c 0.51, CHCl3); 1H NMR (300 MHz, CDCl3)
d 1.01 (t,
D
ꢀ
ꢀ
ꢀ
P212121, a¼10.5342(6) A, b¼11.9064(7) A, c¼17.7165(9) A,
a
¼90ꢀ,
J¼7.1 Hz, 3H), 1.21 (t, J¼7.1 Hz, 3H), 3.90e4.02 (m, 3H), 4.17 (q,
3
ꢀ
¼1.188 Mg/m3,
m
(CuK
a
)¼
J¼7.2 Hz, 2H), 4.26 (dd, J¼8.4 and 11.0 Hz, 1H), 6.33 (dd, J¼8.4 and
ꢀ
b
¼90ꢀ,
g
¼90 , V¼2222.1(2) A , Z¼4,
r