ACCEPTED MANUSCRIPT
[21] H. Lgaz, R. Salghi, S. Jodeh, B. Hammouti, Effect of clozapine on inhibition of mild steel
corrosion in 1.0 M HCl medium, J. Mol. Liq. 225 (2017) 271–280.
[22] S.-W. Xie, Z. Liu, G.-C. Han, W. Li, J. Liu, Z. Chen, Molecular dynamics simulation of
inhibition mechanism of 3, 5-dibromo salicylaldehyde Schiff’s base, Comput. Theor.
Chem. 1063 (2015) 50–62.
[23] F. Bentiss, F. Gassama, D. Barbry, L. Gengembre, H. Vezin, M. Lagrenée, M. Traisnel,
Enhanced corrosion resistance of mild steel in molar hydrochloric acid solution by 1,4-
bis(2-pyridyl)-5H-pyridazino[4,5-b]indole: Electrochemical, theoretical and XPS studies,
Appl. Surf. Sci. 252 (2006) 2684–2691. doi:10.1016/j.apsusc.2005.03.231.
[24] H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B.
Hammouti, I.H. Ali, A. Essamri, Insights into corrosion inhibition behavior of three
chalcone derivatives for mild steel in hydrochloric acid solution, J. Mol. Liq. 238 (2017)
71–83. doi:10.1016/j.molliq.2017.04.124.
[25] C. Verma, M. Quraishi, A. Singh, 2-Amino-5-nitro-4, 6-diarylcyclohex-1-ene-1, 3, 3-
tricarbonitriles as new and effective corrosion inhibitors for mild steel in 1M HCl:
Experimental and theoretical studies, J. Mol. Liq. 212 (2015) 804–812.
[26] D.K. Singh, S. Kumar, G. Udayabhanu, R.P. John, 4 (N, N-dimethylamino) benzaldehyde
nicotinic hydrazone as corrosion inhibitor for mild steel in 1M HCl solution: An
experimental and theoretical study, J. Mol. Liq. 216 (2016) 738–746.
[27] D. Zhang, Y. Tang, S. Qi, D. Dong, H. Cang, G. Lu, The inhibition performance of long-
chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl,
Corros. Sci. 102 (2016) 517–522.
[28] W. Chen, S. Hong, B. Xiang, H. Luo, M. Li, N. Li, Corrosion inhibition of copper in
hydrochloric acid by coverage with trithiocyanuric acid self-assembled monolayers,
Corros. Eng. Sci. Technol. 48 (2013) 98–107.
[29] S. Martinez, M. Metikoš-Huković, A nonlinear kinetic model introduced for the corrosion
inhibitive properties of some organic inhibitors, J. Appl. Electrochem. 33 (2003) 1137–
1142.
[30] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Novel Schiff-base molecules as
efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and
theoretical approach, Phys. Chem. Chem. Phys. 18 (2016) 17898–17911.
[31] A. Ongun Yüce, B. Doğru Mert, G. Kardaş, B. Yazıcı, Electrochemical and quantum
chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl
solution, Corros. Sci. 83 (2014) 310–316. doi:10.1016/j.corsci.2014.02.029.
[32] M. Larouj, H. Lgaz, R. Salghi, H. Serrar, S. Boukhris, S. Jodeh, Experimental and
quantum chemical analysis of new pyrimidothiazine derivative as corrosion inhibitor for
mild steel in 1.0 M hydrochloric acid solution, Anal. Bioanal. Electrochem. 10 (2018) 33–
51.
[33] C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, I.B. Obot, Adsorption
Behavior of Glucosamine-Based, Pyrimidine-Fused Heterocycles as Green Corrosion
Inhibitors for Mild Steel: Experimental and Theoretical Studies, J. Phys. Chem. C. 120
(2016) 11598–11611. doi:10.1021/acs.jpcc.6b04429.
[34] S. Garai, S. Garai, P. Jaisankar, J. Singh, A. Elango, A comprehensive study on crude
methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective
corrosion inhibitors of mild steel in acid solution, Corros. Sci. 60 (2012) 193–204.
[35] M.S. Morad, Inhibition of iron corrosion in acid solutions by Cefatrexyl: Behaviour near
and at the corrosion potential, Corros. Sci. 50 (2008) 436–448.
[36] M. Yadav, R.R. Sinha, T.K. Sarkar, N. Tiwari, Corrosion inhibition effect of pyrazole
derivatives on mild steel in hydrochloric acid solution, J. Adhes. Sci. Technol. 29 (2015)
1690–1713.
19