Chemistry Letters Vol.33, No.10 (2004)
1393
served, which gives a pKa of 5.8, which corresponds to proton-
ation of the tertiary nitrogen atom of DPA. So, it is almost stable
over the physiological pH range.
nm with 5-fold fluorescence enhancement after complexation
with Zn2þ. The quantitative response range is in the sub-nM
range, and its fluorescence is not induced by other biologically
important cations such as Kþ, Naþ, Ca2þ, Fe3þ, Ni2þ, and
Mg2þ under physiological conditions.
8
7
6
5
4
3
This work was supported by ‘‘973 program’’ of the Ministry
of Science and Technology of China and National Science
Foundation of China (project 20128005, 20376010).
References and Notes
1
See special issue on Zn(II) chemistry: W. Maret, BioMetals,
14, 187 (2001).
2
3
4
J. M. Berg and Y. Shi, Science, 271, 1081 (1996).
B. L. Vallee and K. H. Falchuk, Physiol. Rev., 73, 9 (1993).
D. W. Choi and J. Y. Koh, Annu. Rev. Neurosci., 21, 347
(1998).
2
4
6
8
10
12
pH
5
6
J. H. Weiss, S. L. Sensi, and J. Y. Koh, Trends Pharmacol.
Sci., 21, 347 (2000).
Figure 2. Effect of pH on the fluorescence intensity of 1 mM
NIDPA–Zn2þ in phosphatic buffers (excitation at 453 nm) at
25 ꢁC.
a) R. B. Thompson, D. Peterson, W. Mahoney, M. Cramer,
B. P. Maliwal, S. W. S. Suh, C. Frederickson, C. Fierke,
and P. Herman, J. Neurosci. Methods, 118, 63 (2002).
b) E. Kimura and S. Aoki, BioMetals, 14, 191 (2001). c)
E. Kimura and S. Aoki, Chem. Soc. Rev., 27, 179 (1998).
a) S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien,
and S. J. Lippard, J. Am. Chem. Soc., 123, 7831 (2001). b)
S. C. Burdette and S. J. Lippard, Inorg. Chem., 25, 6816
(2002). c) S. C. Burdette, C. J. Frederickson, W. Bu, and
S. J. Lippard, J. Am. Chem. Soc., 125, 1778 (2003).
a) T. Hirnao, K. Kikuchi, Y. Urano, T. Hibuchi, and T.
Nagano, Angew. Chem., Int. Ed., 39, 1052 (2000). b) T.
Hirano, K. Kikuchi, Y. Urano, and T. Nagano, J. Am. Chem.
Soc., 124, 6555 (2002). c) S. Maruyama, K. Kikuchi, T.
Hirano, Y. Urano, and T. Nagano, J. Am. Chem. Soc., 124,
10650 (2002).
8
1.0
7
7
8
0.8
6
0.6
0.4
5
0.2
4
0.0
0
5
10
15
20
[Zn2+]/ nM
3
2
1
0
500
550
600
Wavelength / nm
650
700
9
a) T. Gunnlaugsson, T. C. Lee, and R. Parkesh, Org. Biomol.
Chem., 1, 3265 (2003). b) M. D. Shults, D. A. Pearce, and
B. Imperiali, J. Am. Chem. Soc., 125, 10591 (2003). c)
S. A. de Silva, A. Zavaleta, D. E. Baron, O. Allam, E. V.
Isidor, N. Kashimura, and J. M. Percarpio, Tetrahedron Lett.,
38, 2237 (1997).
Figure 3. Fluorescence emission spectra of 1 mM NIDPA in
buffered Zn2þ solutions with free Zn2þ concentrations from 0
to 20 nM, for the final several spectra, additional ZnSO4 was
added to provide the concentration of free Zn2þ to 25 mM. Inset:
fluorescence response obtained by integrating the emission spec-
10 a) M. E. Huston, C. Engleman, and A. Cadmiation, J. Am.
Chem. Soc., 112, 7054 (1990). b) S. Aoki, S. Kaido, H.
Fujioka, and E. Kimura, Inorg. Chem., 42, 1023 (2003).
11 X. H. Qian, Z. H. Zhu, and K. C. Chen, Dyes Pigm., 11, 13
(1989).
tra between 480 and 700 nm, subtracting the baseline (0 Zn2þ
)
spectrum and normalizing to the full scale. These data were
measured in 10 mM Tris-HCl solutions (pH 7.4) containing
100 mM NaCl, 10 mM NTA, and 0–10 mM ZnSO4. The slit
width was 4 nm for both excitation and emission.
12 For 1: mp 163–164 ꢁC. 1H NMR (400 MHz, CDCl3): ꢀ 8.82
(d, 1H, J ¼ 8:4), 8.64 (d, 1H, J ¼ 7:2), 8.57 (d, 2H, J ¼ 4:8),
8.43 (d, 1H, J ¼ 8:4), 7.82 (s, 1H), 7.72 (t, 1H, J ¼ 8:0), 7.58
(t, 2H, J ¼ 8:0), 7.41 (d, 2H, J ¼ 7:6), 7.16 (t, 2H, J ¼ 5:6),
6.54 (d, 1H, J ¼ 8:4), 4.03 (s, 4H), 3.54 (s, 3H), 3.42 (s, 2H),
3.09 (s, 2H). 13C NMR (100 MHz, CDCl3): ꢀ 165.2, 164.6,
156.7, 148.8, 137.4, 134.7, 131.2, 130.9, 129.6, 128.9,
128.1, 124.6, 124.3, 123.0, 122.7, 120.9, 112.0, 59.5, 51.2,
40.7, 27.1. API–ES–MS (positive) m=z: 452 ([M + H]þ).
13 P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice,
Chem. Rev., 97, 1515 (1997).
In order to determine the ability of NIDPA to complex with
Zn2þ, the apparent dissociation constant, Kd,, was determined
using Zn2þ and pH-buffered solutions8b (Figure 3). From the
sigmoidal curve, Kd is 0.83 nM. Hence, NIDPA can be used to
determine free Zn2þ concentrations at low levels, which is
sensitive for application in mammalian cells. Furthermore, a
Hill plot analysis revealed maximum fluorescence obtained
at 1:1 ratio, which suggested that NIDPA should form a 1:1
complex with Zn2þ
.
In summary, we have developed a simple and sensitive flu-
orescent probe NIDPA (1) for Zn2þ with N,N-bis(2-pyridylme-
thyl)ethylenediamine as acceptor for Zn2þ and 1,8-naphthal-
imide as a fluorophore. It is excited at 453 and emits at 539
14 G. Klein, D. Kaufmann, S. Schurch, and J. L. Reymond,
¨
Chem. Commun., 2001, 561.
Published on the web (Advance View) September 25, 2004; DOI 10.1246/cl.2004.1392