1
50 Kruszynski, Bartczak, and Majewski
R. Z.; Turdybekov, K. M.; Struchkov, Yu. T. Zh
Obshch Khim 1992, 62, 1522–1530; (t) Peper, V.;
Stingl, K.; Thumler, H.; Saak, W.; Haase, D.; Pohl, S.;
Juge, S.; Martens, J. Liebigs Ann Chem 1995, 2123–
N(1), as expected [1,3]. The N(1)–O(1)–N(2) angle is
smaller, and the O(1)–P(1)–S(1) and N(1)–P(1)–S(1)
angles are slightly larger than tetrahedral. The larg-
est angle is that of N(1)–P(1)–S(1). The N(2)–P(1)–
S(1) angle is practically tetrahedral. In the structure
of the 4-3 atom, N(1) has nearly a planar coordina-
2
131; Antipin, M. Yu.; Struchkov, Yu. T.; Tikhonina,
N. A.; Gilyarov, V. A.; Kabachnik, M. I. Zh Strukt
Khim 1981, 22, 93–98; (u) Duthu, B.; El Abed, K.;
Houalla, D.; Wolf, R.; Jaud, J. Can J Chem 1992, 70,
tion, as shows by the sum of angles being equal to
8
09–816; (v) Sournies, F.; Zai, K.; Vercruysse, K.; La-
barre, M. C.; Labarre, J. F. J Mol Struct 1997, 412, 19–
6; (w) Hersh, W. H.; Xu, P.; Simpson, C. K.; Wood,
2
3
56.0Њ. This planarity testifies to sp hybridization at
nitrogen. This probably causes a shortening of the
2
˚
P(1)–N(1) bond, 1.622(4) A, as compared with
T.; Rheingold, A. L. Inorg Chem 1998, 37, 384–385;
(x) Welch, S. C.; Levine, J. A.; Bernal, I.; Cetrullo, J. J
Org Chem 1990, 55, 5991–5995; (y) Pastor, S. D.; Rod-
ebaugh, R. K.; Odorisio, P. A.; Pugin, B.; Rihs, G.;
Togni, A. Helv Chim Acta 1991, 74, 1175–1193;
˚
1
.646(4) and 1.645(2) A for 4-1 and 4-2, respectively.
REFERENCES
(z)Nifant’ev, E. E.; Shishin, A. V.; Teleshev, A. T.; Bek-
[
1] Schwalbe, C. H.; Chopra, G.; Freeman, S.; Brown, J.
M.; Carey, J. V. J Chem Soc Perkin Trans 2 1991,
ker, A. R.; Antipin, M. Yu.; Struchkov, Yu. T. Zh
Obshch Khim 1990, 60, 2072–2080; (aa) Huang,
Yande; Sopchik, A. E.; Arif, A. M.; Atta, M.; Wesley,
G.; Bentrude, W. G. Heteroat Chem 1993, 4, 271–278;
(bb) Baltas, M.; Chahoua, L.; Gorrichon, L.; Tisnes,
P.; Houalla, D.; Wolf, R.; Jaud, J. Can J Chem 1991,
69, 300–310; (cc) Pastor, S. D.; Hyun, J. L.; Odorisio,
P. A.; Rodebaugh, R. K. J Am Chem Soc 1988, 110,
6547–6555; (dd) Floriani, C.; Jacoby, D.; Chiesi-Villa,
A.; Guastini, C. Angew Chem Int Ed Engl 1989, 28,
1376–1377; (ee) Brunel, J. M.; Buono, G.; Baldy, A.;
Feneau-Dupont, J.; Declercq, J. P. Acta Cryst 1994,
C50, 954–955; Houalla, D.; Bounja, Z.; Skouta, S.;
Wolf, R.; Jaud, J. Heteroat Chem 1994, 5, 175–191;
(ff) Setzer, W. N.; Flair, M. N.; Yang, H. Heteroat
Chem 1994, 5, 359–368; Nakazawa, H.; Yamaguchi,
Y.; Mizuta, T.; Miyoshi, K. Organometallics 1995, 14,
4173–4182.
2
081–2090, and references cited therein.
2] (a) Vierling, P.; Riess, J. G. Grand A. Inorg Chem 1986,
5, 4144–4152; (b) Jeanneaux, F.; Grand, A.; Riess, J.
[
2
G. J Am Chem Soc 1981, 103, 4272–4273; (c) Batsa-
nov, A. S.; Struchkov, Yu. T.; Pudovik, M. A.; Kibar-
dina, L. K.; Pudovik, A. N. Kristallografiya 1982, 27,
2
62–266; (d) Grec, D.; Hubert-Pfalzgraf, L. G.; Grand,
A.; Reiss, J. G. Inorg Chem 1985, 24, 4642–4646; (e)
Bonningue, C.; Houalla, D.; Wolf, R.; Jaud, J. J Chem
Soc Perkin Trans 2 1983, 773–776; (f) Chandrasekhar,
V.; Krishnamurthy, S. S.; Manohar, H.; Murthy, A. R.
V.; Shaw, R. A.; Woods, M.; J Chem Soc Dalton Trans
1
984, 621–625; Cates, L. A.; Ven-Shun, Li; Powell, D.
R.; Helm, D. J Med Chem 1984, 27, 397–401; (g)
Hoeve, W.; Dhathathreyan, K. S.; Grampel, J. C.; Bol-
huis, F. Phosphorus Sulfur 1986, 26, 293–298; (h)
Roesky, H. W.; Pogatzki, V. W.; Dhathathreyan, K. S.;
Thiel, A.; Schmidt, H. G.; Dyrbusch, M.; Noltemeyer,
M.; Sheldrick, G. M. Chem Ber 1986, 119, 2687–2697;
[3] Bartczak, T. J.; Galdecki, Z.; Antipin, M. Y.; Struch-
kov, Yu. T. Phosphorus Sulphur 1984, 19, 11–16 and
references cited therein.
(
i) Aken, D.; Merkelbach, I. I.; Koster, A. S.; Buck, H.
[4] Sum, V.; Baird, C. A.; Kee, T. P.; Thornton-Pett, M. J
Chem Soc Perkin Trans 1 1994, 3183–3200 and ref-
erences cited therein.
[5] Bernard, D.; Burgada, R. Phosphorus 1974, 3, 187–
193.
[6] Sheldrick, G. M. SHELXS-97, Program for the Solu-
tion of Crystal Structures. University of G o¨ ttingen,
Germany, 1997.
[7] Sheldrick, G. M. SHELXL-97, Program for the Solu-
tion and Refinement of Crystal Structures. University
of G o¨ ttingen, Germany, 1997.
M. Chem Commun 1980, 1045–1046; (j) Arduengo
III, A. J.; Stewart, C. A.; Davidson, F.; Dixon, D. A.;
Becker, J. Y.; Culley, S. A.; Mizen, M. B. J Am Chem
Soc 1987, 109, 627–647; (k) Gamble, M. P.; Smith, A.
R. C.; Wills, M. J Org Chem 1998, 63, 6068–6071; (l)
Clardy, J. C.; Milbrath, D. S.; Springer, J. P.; Verkade,
J. G. J Am Chem Soc 1976, 98, 623–624; (m) Krebs,
R.; Schmutzler, R.; Schomburg, D. Polyhedron 1989,
8
, 731–738; (n) Katagiri, N.; Yamamoto, M.; Iwaoka,
T.; Kaneko, C. Chem Commun 1991, 1429–1430; (o)
Nifant’ev, E. E.; Shishin, A. V.; Teleshev, A. T.; Bekker,
A. R.; Nevskii, N. N.; Baturin, N. N. Zh Obshch Khim
[8] Sheldrick, G. M. Release 4.1 of SHELXTL PC for
Siemens Crystallographic Systems. Siemens Analyti-
cal X-Ray Instruments Inc., May 1990.
1
991, 61, 2481–2493; (p) Smits, J. M. M.; Beurskens,
P. T.; Thijs, L.; Loon, A. A. W. M.; Zwanenburg, B. J
Crystallogr Spectrosc Res 1988, 18, 625–632; (q) Rob-
inson, P. D.; Hua, D. H.; Roche, D. Acta Cryst 1992,
C48, 923–925; (r) Chandrasekaran, A.; Krishnamur-
thy, S. S.; Nethaji, M. J Chem Soc Dalton Trans 1994,
[9] Full crystallographic details have been deposited at
Crystallographic Data Centre, University Chemical
Laboratory, Lensfield Road, Cambridge CB1 1EW,
United Kingdom and allocated the deposition num-
bers CCDC 145596, CCDC 145597, and CCDC 145598
for structures 4-1, 4-2, and 4-3, respectively.
6
3–68; (s) Gazaliev, A. M.; Nurkenov, O. A.; Kasenov,