C. Liu et al. / Tetrahedron Letters 48 (2007) 435–437
437
3. Hajiduk, P. J.; Dinges, J.; Schkeryantz, J. M.; Janowick,
D.; Kaminski, M.; Tufano, M.; Augeri, D. J.; Petros, A.;
Nienaber, V.; Zhong, P.; Hammond, R.; Coen, M.; Beutel,
B.; Katz, L.; Fesik, S. W. J. Med. Chem. 1999, 42, 3852–
3859.
mediate 4i–k formed, they underwent electrophilic reac-
tions with unreacted amidines 3f–h at the position de-
noted with an arrow before intramolecular cyclizations
could occur (Fig. 1). The by-products from such reac-
tions would be 7a–c that could also participate in the
conversion of 4i–k to 6 in the same manner. If by-prod-
ucts 7a–c were not stable, they would likely decompose
back to the starting amidines 3f–g. In the case of 4a, 4g,
and 4h, the steric hindrance provided by phenyl, i-pro-
pyl, and t-butyl might have impeded such electrophilic
reactions significantly, and therefore, 1,3,5-triazine-2,4-
diamine derivatives 5a, 5g, and 5h were generated as
the major products. Benzamidine is also less nucleo-
philic than amidines 3f–h to initiate the side reaction,
and this may also play a role in determining the extent
of by-product 6 in the case of 4a.
´
´
4. Kosary, J.; Kasztreiner, E.; Rabloczky, G.; Kurthy, M.
¨
Eur. J. Med. Chem. 1989, 24, 97–99.
5. Irikura, T.; Abe, Y.; Okamura, K.; Higo, K.; Maeda, A.;
Morinaga, F.; Shirai, G.; Hatae, S. J. Med. Chem. 1970,
13, 1081–1089.
6. Hirt, R.; Nidecker, H.; Berchtold, R. Helv. Chim. Acta
1950, 33, 1365–1369.
7. Yuki, Y.; Sakurai, S.; Kakurai, T.; Noguchi, T. Bull.
Chem. Soc. Jpn. 1970, 43, 2130–2134.
8. Shapiro, S. L.; Isaacs, E. S.; Parrino, V. A.; Freedman, L.
J. Org. Chem. 1961, 26, 68–74.
9. Alkalay, D.; Volk, J.; Bartlett, M. F. J. Pharm. Sci. 1976,
65, 525–529.
10. Liu, C.; Iwanowicz, E. J. Tetrahedron Lett. 2003, 44, 1409–
1411.
In summary, a convenient synthetic procedure for
the preparation of N,6-disubstituted-1,3,5-triazine-2,4-
diamines from isothiocyanates, sodium hydrogencyan-
amide, and amidines has been reported in this letter.
This procedure possesses the advantages of a one-pot
operation that requires only mild conditions. The new
protocol appears to be general with isothiocyanates
(both aromatic and aliphatic) and aromatic carbami-
dines. With aliphatic carbamidines, the outcome of the
procedure is apparently determined by steric hindrance.
More hindered aliphatic carbamidines give the desired
product, while less hindered aliphatic carbamidines lead
to N-cyanoguanidines.
11. Compound 5a: 1H NMR (400 MHz, DMSO-d6) d: 9.41
(1H, s), 8.33 (2H, d, J = 6.9 Hz), 7.56–7.49 (3H, m), 7.28
(2H, s), 7.18 (2H, br s), 3.80 (6H, s), 3.63 (3H, s); 13C
NMR (100 MHz, DMSO-d6) d: 170.5, 167.4, 164.8, 152.9,
137.1, 136.4, 132.9, 131.8, 128.6, 128.1, 98.0, 60.4, 56.1.
12. Compound 5b: 1H NMR (400 MHz, DMSO-d6) d: 8.91
(1H, s), 8.25 (2H, d, J = 6.9 Hz), 7.83 (1H, d, J = 8.7 Hz),
7.69 (1H, s), 7.57–7.44 (4H, m), 7.15 (2H, br s); 13C NMR
(100 MHz, DMSO-d6) d: 170.7, 167.6, 136.9, 135.4, 131.8,
129.6, 129.5, 129.2, 128.9, 128.7, 128.2, 127.8.
13. Compound 5c: 1H NMR (400 MHz, DMSO-d6) d: 9.55
(1H, s), 8.33 (2H, d, J = 6.7 Hz), 7.85 (2H, d, J = 7.9 Hz),
7.58–7.49 (3H, m), 7.31 (2H, dd, J = 7.8, 7.8 Hz), 7.16
(2H, br s), 7.00 (1H, t, J = 7.3 Hz); 13C NMR (100 MHz,
DMSO-d6) d: 170.6, 167.5, 165.0, 140.3, 137.1, 131.8,
128.8, 128.6, 128.1, 122.3, 120.3.
A representative procedure demonstrated by the prepara-
tion of 5b: To a solution of 2,4-dichlorophenyl isothio-
cyanate (0.215 g, 1.00 mmol) in dry DMF (5 mL) was
added sodium hydrogencyanamide (68.6 mg, 1.05 mmol)
at room temperature in one portion. The mixture
was heated at 60 ꢁC for 50 min before triethylamine
(0.31 mL, 2.22 mmol), benzamidine hydrochloride
(0.235 g, 1.50 mmol), and EDC (0.240 g, 1.25 mmol)
were added at room temperature. The mixture was stir-
red at rt for 30 min and then at 75 ꢁC for 1 h. On cooling
to rt, the mixture was diluted with ethyl acetate (80 mL),
washed sequentially with water (25 mL) and 10% LiCl
solution (25 mL), and dried over anhydrous MgSO4.
The solution was concentrated under vacuum, and the
residue was subjected to flash chromatography (silica
gel, 30% ethyl acetate/hexane) to afford 5b (0.180 g,
54% yield) as a pale yellow solid.
14. Compound 5d: 1H NMR (400 MHz, DMSO-d6) d: 9.53
(1H, s), 8.28 (2H, d, J = 8.4 Hz), 8.00 (1H, s), 7.93 (2H, d,
J = 8.4 Hz), 7.77 (2H, d, J = 7.9 Hz), 7.41 (1H, s), 7.24
(2H, dd, J = 7.8, 7.8 Hz), 7.16 (2H, br s), 6.93 (1H, t,
J = 7.4 Hz); 13C NMR (100 MHz, DMSO-d6) d: 169.9,
167.8, 167.5, 164.9, 140.2, 139.6, 137.1, 128.8, 127.9, 127.8,
122.4, 120.3.
15. LC–MS conditions: Column: Phenomenex 5u C18
4.6 · 50 mm; Solvent A: 10% MeOH—90% H2O—0.1%
TFA; Solvent B: 90% MeOH—10% H2O—0.1% TFA;
Gradient time: 4 min; Detecting wavelength: 254 nm.
16. Compound 5g: 1H NMR (400 MHz, DMSO-d6) d: 9.22
(1H, s), 7.23 (2H, s), 6.97 (2H, br s), 3.75 (6H, s), 3.60 (3H,
s), 2.66 (1H, m), 1.20 (6H, d, J = 6.9 Hz); 13C NMR
(125 MHz, DMSO-d6) d: 182.4, 167.2, 164.8, 153.0, 136.6,
132.8, 98.0, 60.6, 56.2, 39.8, 21.3.
17. Compound 5h: 1H NMR (400 MHz, DMSO-d6) d: 9.14
(1H, s), 7.24 (2H, s), 6.90 (2H, br s), 3.75 (6H, s), 3.61 (3H,
s), 1.26 (9H, s); 13C NMR (125 MHz, DMSO-d6) d: 184.4,
167.1, 164.6, 152.8, 136.6, 132.6, 97.7, 60.4, 56.0, 38.8,
29.2.
References and notes
18. Compound 6: 1H NMR (500 MHz, DMSO-d6) d: 8.99
(1H, s), 6.95 (2H, s), 6.64 (2H, s), 3.76 (6H, s), 3.64 (3H, s);
13C NMR (100 MHz, DMSO-d6) d: 159.9, 153.1, 134.4,
134.0, 117.7, 100.1, 60.4, 56.1.
1. Pitts, W. J.; Guo, J.; Dhar, T. G. M.; Shen, Z.; Gu, H.;
Watterson, S. H.; Bednarz, M. S.; Chen, B.-C.; Barrish, J.
C.; Bassolino, D.; Cheney, D.; Fleener, C. A.; Rouleau, K.
A.; Hollenbaugh, D. L.; Iwanowicz, E. J. Bioorg. Med.
Chem. Lett. 2002, 12, 2137–2140.
19. Iwanowicz, E. J.; Watterson, S. H.; Liu, C.; Gu, H.; Mitt,
T.; Leftheris, K.; Barrish, J. C.; Fleener, C. A.; Rouleau,
K.; Sherbina, N. Z.; Hollenbaugh, D. L. Bioorg. Med.
Chem. Lett. 2002, 12, 2931–2934.
2. Hanessian, S.; Sgarbi, P. W. M. Bioorg. Med. Chem. Lett.
2000, 10, 437–443.