Beilstein J. Org. Chem. 2020, 16, 888–894.
3. Wang, S.; Corcilius, L.; Sharp, P. P.; Payne, R. J. Bioorg. Med. Chem.
4. Valverde, P.; Ardá, A.; Reichardt, N.-C.; Jiménez-Barbero, J.;
Gimeno, A. Med. Chem. Commun. 2019, 10, 1678–1691.
Conclusion
We described the efficient chemical synthesis of a series of new
glycopeptides containing asparagine, tryptophane, alanine, and
phenylalanine linked to various saccharides, such as glucose,
galactose, mannose, cellobiose, lactose, and maltose. We further
compared two common peptide coupling procedures that use
HBTU and HATU, respectively. We showed that the use of
HATU reduced the reaction times but did not always result in
higher yields, as anticipated from the literature. A simple
cleavage protocol that did not necessitate any further purifica-
tion step allowed for the preparation of the unprotected glyco-
peptides in solution. The investigation of the self assembly of
such glycopeptides on metal surfaces will be performed via
pMS and STM in further studies.
5. Apweiler, R.; Hermjakob, H.; Sharon, N.
Biochim. Biophys. Acta, Gen. Subj. 1999, 1473, 4–8.
6. Nörrlinger, M.; Ziegler, T. Beilstein J. Org. Chem. 2014, 10,
7. Du, J.-J.; Gao, X.-F.; Xin, L.-M.; Lei, Z.; Liu, Z.; Guo, J. Org. Lett. 2016,
8. Kunz, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 294–308.
9. Largy, E.; Cantais, F.; Van Vyncht, G.; Beck, A.; Delobel, A.
J. Chromatogr. A 2017, 1498, 128–146.
10.Giorgetti, J.; D’Atri, V.; Canonge, J.; Lechner, A.; Guillarme, D.;
Colas, O.; Wagner-Rousset, E.; Beck, A.; Leize-Wagner, E.;
François, Y.-N. Talanta 2018, 178, 530–537.
Supporting Information
11.Planinc, A.; Dejaegher, B.; Heyden, Y. V.; Viaene, J.; Van Praet, S.;
Rappez, F.; Van Antwerpen, P.; Delporte, C. Anal. Bioanal. Chem.
12.Cai, H.; Orwenyo, J.; Giddens, J. P.; Yang, Q.; Zhang, R.;
LaBranche, C. C.; Montefiori, D. C.; Wang, L.-X. Cell Chem. Biol. 2017,
13.Blaskovich, M. A. T.; Hansford, K. A.; Butler, M. S.; Jia, Z.; Mark, A. E.;
Cooper, M. A. ACS Infect. Dis. 2018, 4, 715–735.
Supporting Information File 1
General methods, experimental procedures, and product
characterization data of the compounds 1a–f to 11a–f.
Supporting Information File 2
NMR spectra of the compounds 1a–f to 11a–f.
14.Martínez-Sáez, N.; Supekar, N. T.; Wolfert, M. A.; Bermejo, I. A.;
Hurtado-Guerrero, R.; Asensio, J. L.; Jiménez-Barbero, J.; Busto, J. H.;
Avenoza, A.; Boons, G.-J.; Peregrina, J. M.; Corzana, F. Chem. Sci.
15.Pinzón Martín, S. M.; Medina, R. F.; Iregui Castro, C. A.;
Rivera Monroy, Z. J.; García Castañeda, J. E. Int. J. Pept. Res. Ther.
16.Abb, S.; Tarrat, N.; Cortés, J.; Andriyevsky, B.; Harnau, L.;
Schön, J. C.; Rauschenbach, S.; Kern, K. Angew. Chem., Int. Ed.
17.Rauschenbach, S.; Ternes, M.; Harnau, L.; Kern, K.
Annu. Rev. Anal. Chem. 2016, 9, 473–498.
Acknowledgements
We would like to thank Dr. Dorothee Wistuba and her team for
the measurement of the mass spectra and Petra Schülzle for per-
forming the elemental analysis. We also want to thank Dr.
Sabine Abb and Prof. Dr. Klaus Kern from the Max Planck
Institute for Solid State Research for help in the field of
parts of our graphical abstract.
18.Abb, S.; Harnau, L.; Gutzler, R.; Rauschenbach, S.; Kern, K.
19.Larkin, A.; Imperiali, B. Biochemistry 2011, 50, 4411–4426.
Funding
We would like to thank the Baden-Württemberg Stiftung for
20.Han, S.-Y.; Kim, Y.-A. Tetrahedron 2004, 60, 2447–2467.
financial support.
21.Rauschenbach, S.; Rinke, G.; Gutzler, R.; Abb, S.; Albarghash, A.;
Le, D.; Rahman, T. S.; Dürr, M.; Harnau, L.; Kern, K. ACS Nano 2017,
ORCID® iDs
22.Michihata, N.; Kaneko, Y.; Kasai, Y.; Tanigawa, K.; Hirokane, T.;
Higasa, S.; Yamada, H. J. Org. Chem. 2013, 78, 4319–4328.
References
1. Hart, G. W.; Copeland, R. J. Cell 2010, 143, 672–676.
23.Moyle, P. M.; Olive, C.; Ho, M.-F.; Pandey, M.; Dyer, J.; Suhrbier, A.;
Fujita, Y.; Toth, I. J. Med. Chem. 2007, 50, 4721–4727.
2. Unverzagt, C.; Kajihara, Y. Chem. Soc. Rev. 2013, 42, 4408–4420.
24.Lin, Y. A.; Chalker, J. M.; Davis, B. G. J. Am. Chem. Soc. 2010, 132,
893