Journal of the American Chemical Society
Page 10 of 12
C.-F. Stable Enantiomers Displaying Thermally Activated Delayed
Caffrey, D. F.; Gunnlaugsson, T. Lanthanide-directed Synthesis of
Fluorescence: Efficient OLEDs with Circularly Polarized
Electroluminescence, Angew. Chem. Int. Ed. 2018, 57, 2889–2893.
(5) (a) Feuillastre, S.; Pauton, M.; Gao, L.; Desmarchelier, A.;
Riives, A. J.; Prim, D.; Tondelier, D.; Geffroy, B.; Muller, G.;
Clavier, G.; Pieters, G. Design and Synthesis of New Circularly
Polarized Thermally Activated Delayed Fluorescence Emitters, J.
Am. Chem. Soc. 2016, 138, 3990–3993. (b) Cruz, C. M.; Castro-
Fernández, S.; Maçôas, E.; Cuerva, J. M.; Campaña, A. G.
Undecabenzo[7]superhelicene: A Helical Nanographene Ribbon
as a Circularly Polarized Luminescence Emitter, Angew. Chem.
Int. Ed. 2018, 57, 14782–14786.
Luminescent Self-assembly Supramolecular Structures and
Mechanically Bonded Systems from Acyclic Coordinating Organic
Ligands, Chem. Soc. Rev. 2016, 45, 3244–3274. (c) Kitchen, J. A.;
Barry, D. E.; Mercs, L.; Albrecht, M.; Peacock, R. D.;
Gunnlaugsson, T. Circularly Polarized Lanthanide Luminescence
from Langmuir–Blodgett Films Formed from Optically Active and
Amphiphilic EuIII-Based Self-Assembly Complexes, Angew. Chem.
Int. Ed. 2012, 51, 704–708. (d) Shuvaev, S.; Starck, M.; Parker, D.
Responsive, Water-Soluble Europium(III) Luminescent Probes,
Chem. Eur. J. 2017, 23, 9974–9989.
(13) Stomeo, F.; Lincheneau, C.; Leonard, J. P.; O’Brien, J. E.;
Peacock, R. D.; McCoy, C. P.; Gunnlaugsson, T. Metal-Directed
Synthesis of Enantiomerially Pure Dimetallic Lanthanide
Luminescent Triple-Stranded Helicates, J. Am. Chem. Soc. 2009,
131, 9636–9637.
(14) Yeung, C.-T.; Yim, K.-H.; Wong, H.-Y.; Pal, R.; Lo, W.-S.;
Yan, S.-C.; Wong, M. Y.-M.; Yufit, D.; Smiles, D. E.; McCormick,
L. J.; Teat, S. J.; Shuh, D. K.; Wong, W.-T.; Law, G.-L. Chiral
Transcription in Self-Assembled Tetrahedral Eu4L6 Chiral Cages
Displaying Sizable Circularly Polarized Luminescence, Nature
Commun. 2017, 8, 1128.
(15) (a) Xuan, W.; Zhang, M.; Liu, Y.; Chen, Z.; Cui, Y. A Chiral
Quadruple-Stranded Helicate Cage for Enantioselective
Recognition and Separation, J. Am. Chem. Soc. 2012, 134,
6904−6907. (b) Hou, Y.-J.; Wu, K.; Wei, Z.-W.; Li, K.; Lu, Y.L.; Zhu,
C.-Y.; Wang, J.-S.; Pan, M.; Jiang, J.-J.; Li, G.Q.; Su, C.-Y. Design
and Enantioresolution of Homochiral Fe(II)−Pd(II) Coordination
Cages from Stereolabile Metalloligands: Stereochemical Stability
and Enantioselective Separation, J. Am. Chem. Soc. 2018, 140,
18183−18191. (c) Wu, K.; Li, K.; Hou, Y.-J.; Pan, M.; Zhang, L.-Y.;
Chen, L.; Su, C.-Y. Homochiral D4-symmetric metal–organic
cages from stereogenic Ru(II) metalloligands for effective
enantioseparation of atropisomeric molecules, Nature Commun.
2016, 7, 10487.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(6) (a) Jiang, H.; Jiang, Y.; Han, J.; Zhang, L.; Liu, M. Helical
Nanostructures: Chirality Transfer and
a
Photodriven
Transformation from Superhelix to Nanokebab, Angew. Chem.
Int. Ed. 2019, 58, 785–790. (b) Yang, D.; Duan, P.; Zhang, L.; Liu,
M. Chirality and Energy Transfer Amplified Circularly Polarized
Luminescence in Composite Nanohelix, Nature Commun. 2017, 8,
15727.
(7) (a) San Jose, B. A.; Yan, J.; Akagi, K. Dynamic Switching of
the Circularly Polarized Luminescence of Disubstituted
Polyacetylene by Selective Transmission through a Thermotropic
Chiral Nematic Liquid Crystal, Angew. Chem. Int. Ed. 2014, 53,
10641–10644. (b) San Jose, B. A.; Matsushita, S.; Akagi, K. Lyotropic
Chiral Nematic Liquid Crystalline Aliphatic Conjugated Polymers
Based on Disubstituted Polyacetylene Derivatives That Exhibit
High Dissymmetry Factors in Circularly Polarized Luminescence,
J. Am. Chem. Soc. 2012, 134, 19795−19807.
(8) (a) Hellou, N.; Srebro-Hooper, M.; Favereau, L.; Zinna, F.;
Caytan, E.; Toupet, L.; Dorcet, V.; Jean, M.; Vanthuyne, N.;
Williams, J. A. G.; Di Bari, L.; Autschbach, J.; Crassous, J.
Enantiopure Cycloiridiated Complexes Bearing a Pentahelicenic
N-Heterocyclic Carbene and Displaying Long-Lived Circularly
Polarized Phosphorescence, Angew. Chem. Int. Ed. 2017, 56, 8236–
8239. (b) Aoki, R.; Toyoda, R.; Kögel, J. F.; Sakamoto, R.; Kumar,
J.; Kitagawa, Y.; Harano, K.; Kawai, T.; Nishihara, H.
Bis(dipyrrinato)zinc(II) Complex Chiroptical Wires: Exfoliation
into Single Strands and Intensification of Circularly Polarized
Luminescence, J. Am. Chem. Soc. 2017, 139, 16024−16027.
(9) (a) Riehl, J. P.; Muller, G. Circularly Polarized Luminescence
Spectroscopy From Lanthanide Systems. Handbook on the
Physics and Chemistry of Rare Earths Elsevier: Amsterdam 2005,
Vol.34, Chapter 220, pp 289–357. (b) Lunkley, J. L.; Shirotani, D.;
Yamanari, K.; Kaizaki, S. Muller, G. Extraordinary Circularly
Polarized Luminescence Activity Exhibited by Cesium Tetrakis(3-
heptafluoro-butylryl-(+)-camphorato) Eu(III) Complexes in
EtOH and CHCl3 Solutions, J. Am. Chem. Soc. 2008, 130,
13814−13815. (c) Dai, L.; Lo, W.-S.; Coates, I. D.; Pal, R.; Law, G.-L.
New Class of Bright and Highly Stable Chiral Cyclen Europium
Complexes for Circularly Polarized Luminescence Applications,
Inorg. Chem. 2016, 55, 9065−9070.
(16) (a) Dong, J.; Zhou, Y.; Zhang, F.; Cui, Y. A Highly
Fluorescent
Metallosalalen-Based
Chiral
Cage
for
Enantioselective Recognition and Sensing, Chem. -Eur. J. 2014, 20,
6455–6461. (b) Pan, M.; Wu, K.; Zhang, J.-H.; Su, C.-Y. Chiral
Metal–Organic Cages/Containers (MOCs): From Structural and
Stereochemical Design to Applications, Coord. Chem. Rev. 2019,
378, 333–349.
(17) (a) Tan, C.; Jiao, J.; Li, Z; Liu, Y.; Han, X.; Cui, Y. Design and
Assembly of
a
Chiral Metallosalen-Based Octahedral
Coordination Cage for Supramolecular Asymmetric Catalysis,
Angew. Chem. Int. Ed. 2018, 57, 1–7. (b) Brown, C. J.; Toste, F. D.;
Bergman, R. G.; Raymond, K. N. Supramolecular Catalysis in
Metal−Ligand Cluster Hosts, Chem. Rev. 2015, 115, 3012−3035. (c)
Zhao, C.; Sun, Q.-F.; Hart-Cooper, W. M.; DiPasquale, A. G.;
Toste, F. D.; Bergman, R. G.; Raymond, K. N. Chiral Amide
Directed Assembly of
a
Diastereo- and Enantiopure
(10) (a) Carr, R.; Evans, N. H.; Parker, D. Lanthanide Complexes
as Chiral Probes Exploiting Circularly Polarized Luminescence,
Chem. Soc. Rev. 2012, 41, 7673–7686. (b) Shuvaev, S.; Suturina, E.
A.; Mason, K.; Parker, D. Chiral Probes for α1-AGP Reporting by
Species-specific Induced Circularly Polarised Luminescence,
Chem. Sci. 2018, 9, 2996–3003.
(11) (a) Zinna, F.; Giovanella, U.; Di Bari, L. Highly Circularly
Polarized Electroluminescence from a Chiral Europium Complex,
Adv. Mater. 2015, 27, 1791–1795. (b) Zinna, F.; Pasini, M.; Galeotti,
F.; Botta, C.; Di Bari, L.; Giovanella, U. Design of Lanthanide-
Based OLEDs with Remarkable Circularly Polarized
Electroluminescence, Adv. Funct. Mater. 2017, 27, 1603719.
(12) (a) Byrne, J. P.; Kitchen, J. A.; Gunnlaugsson, T. The Btp
Supramolecular Host and its Application to Enantioselective
Catalysis of Neutral Substrates, J. Am. Chem. Soc. 2013, 135,
18802−18805.
(18) Chen, L.-J.; Yang, H.-B.; Shionoya, M. Chiral
metallosupramolecular architectures, Chem. Soc. Rev. 2017, 46,
2555−2576.
(19) (a) Rizzuto, F. J.; Pröhm, P.; Plajer, A. J.; Greenfield, J. L.;
Nitschke, J. R. Hydrogen-Bond-Assisted Symmetry Breaking in a
Network of Chiral Metal-Organic Assemblies, J. Am. Chem. Soc.
2019, 141, 1707−1715. (b) Zhao, C.; Toste, F. D.; Raymond, K. N.;
Bergman, R. G. Nucleophilic Substitution Catalyzed by
a
Supramolecular Cavity Proceeds with Retention of Absolute
Stereochemistry, J. Am. Chem. Soc. 2014, 136, 14409−14412. (c)
Argent, S. P.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.;
Ward, M. D. Diastereoselective Formation and Optical Activity of
an M4L6 Cage Complex, Chem. Commun. 2005, 4647–4649.
[2,6-bis(1,2,3-triazol-4-yl)pyridine] Binding Motif:
A
New
Versatile Terdentate Ligand for Supramolecular and Coordination
Chemistry, Chem. Soc. Rev. 2014, 43, 5302–5325. (b) Barry, D. E.;
ACS Paragon Plus Environment