Published on Web 02/04/2005
Structure-Property Relationships of Donor/
Acceptor-Functionalized Tetrakis(phenylethynyl)benzenes and
Bis(dehydrobenzoannuleno)benzenes
Jeremiah A. Marsden, Jeremie J. Miller, Laura D. Shirtcliff, and Michael M. Haley*
Contribution from the Department of Chemistry and Materials Science Institute,
UniVersity of Oregon, Eugene, Oregon 97403-1253
Received September 24, 2004; E-mail: haley@uoregon.edu
Abstract: A series of tetrakis(phenylethynyl)benzenes and bis(dehydrobenzoannuleno)benzenes have been
synthesized containing tetra-substitutions of neutral, donor, and mixed donor/acceptor groups. To ascertain
the importance of substitutional and structural differences of the phenylacetylenes, the optical absorption
and emission properties of each series were examined. Conjugation effectiveness, electron density, planarity,
and geometry of charge-transfer pathways were found to have a pronounced effect on the overall optical
and material properties. Considerable self-association behavior due to face-to-face stacking in solution
was observed for donor/acceptor-functionalized macrocycles and was quantified by concentration-dependent
1H NMR measurements. A solvent-dependent polymerization of one macrocycle regioisomer was observed
and characterized. To provide further insight into the energy levels and electronic transitions present,
computational studies of each system were performed.
Introduction
with a specific application in mind, knowledge of the material’s
structure-property relationship is necessary. With this under-
standing, the ability to “tune” a class of materials to enhance
an explicit property can be achieved.
Organic compounds possessing a high degree of conjugation
have long been recognized as ideal materials for advanced
electronic and photonic applications including organic LEDs,
liquid crystal displays, thin film transistors, solar cells, and
optical storage devices.1-3 Changes in the substitutional groups
and substitution pattern, conjugation, and molecular electronic
structure can bring about very different optical and physical
properties for such materials.2-7 To design an organic molecule
Functionalized cruciform-conjugated phenylacetylene and
phenylvinylene structures are known to exhibit remarkable
optical and electronic properties because of their multiple
conjugated pathways.2,6-9 Possessing this cruciform-type struc-
ture, 1,2,4,5-tetrakis(phenylethynyl)benzenes (TPEBs) provide
an ideal carbon framework for studying the intrinsic effect of
functional group substitution on each conjugated pathway and
on the overall material properties of each system. Substitution
of electron donor and/or acceptor groups at the 4′-positions gives
rise to discreet two-dimensional π-chromophores. By varying
the substitution pattern of the donor and acceptor groups, each
individual charge-transfer pathway can be enhanced. We10-12
(1) (a) Chen, J.; Reed, M. A.; Dirk, S. M.; Price, D. W.; Rawlett, A. M.; Tour,
J. M.; Grubisha, D. S.; Bennett, D. W. NATO Sci. Ser. II: Math., Phys.,
Chem. 2003, 96, 59-195. (b) Domerco, B.; Hreha, R. D.; Zhang, Y.-D.;
Haldi, A.; Barlow, S.; Marder, S. R.; Kippelen, B. J. Polym. Sci., Part B:
Polym. Phys. 2003, 41, 2726-2732. (c) Shirota, Y. J. Mater. Chem. 2000,
10, 1-25. (d) Photonic and Optoelectronic Polymers; Jenekhe, S. A.,
Wynne, K. J., Eds.; American Chemical Society: Washington, DC, 1995.
(e) Special Issue: Chem. ReV. 1994, 94, 1-278. (f) Conjugated Polymers
and Related Materials. The Interconnection of Chemical and Electronic
Structure; Lunstro¨m, W. R., Salaneck, I., Rånby, B., Eds.; Oxford University
Press: Oxford, 1993.
(2) Nielsen, M. B.; Diederich, F. In Modern Arene Chemistry; Astruc, D., Ed.;
Wiley-VCH: Weinheim, Germany, 2002; pp 196-216.
(7) Tykwinski, R. R.; Schreiber, M.; Gramlich, V.; Seiler, P.; Diederich, F.
AdV. Mater. 1996, 8, 226-31.
(3) Cornil, J.; Beljonne, D.; Calbert, J.-P.; Bre´das, J.-L. AdV. Mater. 2001, 13,
1053-1067.
(8) (a) Wilson, J. N.; Hardcastle, K. I.; Josowicz, M.; Bunz, U. H. F.
Tetrahedron 2004, 60, 7157-7167. (b) Wilson, J. N.; Smith, M. D.;
Enkelmann, V.; Bunz, U. H. F. Chem. Commun. 2004, 1700-1701. (c)
Wilson, J. N.; Josowicz, M.; Wang, Y.; Bunz, U. H. F. Chem. Commun.
2003, 2962-2963. (d) Miteva, T.; Palmer, L.; Kloppenburg, L.; Neher,
D.; Bunz, U. H. F. Macromolecules 2000, 33, 652-654.
(9) (a) Ojima, J.; Kakumi, H.; Kitatani, K.; Wada, K.; Ejiri, E.; Nakada, T.
Can. J. Chem. 1984, 63, 2885-2891. (b) Ojima, J.; Enkaku, M.; Uwai, C.
Bull. Chem. Soc. Jpn. 1977, 50, 933-935.
(4) Inter alia: (a) Boydston, A. J.; Yin, Y.; Pagenkopf, B. L. J. Am. Chem.
Soc. 2004, 126, 3724-3725. (b) Wong, M. S.; Li, Z. H.; Tao, Y.; D’Iorio,
M. Chem. Mater. 2003, 15, 1198-1203. (c) van Mullekom, H. A. M.;
Vekemans, J. A. J. M.; Havinga, E. E.; Meijer, E. W. Mater. Sci. Eng., R
2001, R32, 1-40. (d) Tykwinski, R. R.; Hilger, A.; Diederich, F.; Luthi,
H. P.; Seiler, P.; Gramlich, V.; Gisselbrecht, J.-P.; Boudon, C.; Gross, M.
HelV. Chim. Acta 2000, 83, 1484-1508. (e) Cammi, R.; Mennucci, B.;
Tomasi, J. J. Am. Chem. Soc. 1998, 120, 8834-8847. (f) Moore, A. J.;
Bryce, M. R.; Batsanov, A. S.; Green, A.; Howard, J. A. K.; McKervey,
A.; McGuigan, P.; Ledoux, I.; Orti, E.; Viruela, R.; Viruela, P. M.; Tarbit,
B. J. Mater. Chem. 1998, 8, 1173-1184. (g) Bourhill, G.; Bre´das, J.-L.;
Cheng, L.-T.; Marder, S. R.; Meyers, F. M.; Perry, J. W.; Tiemann, B. G.
J. Am. Chem. Soc. 1994, 116, 2619-2620.
(10) (a) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org. Chem. 2003,
2355-2369. (b) Jones, C. S.; O’Connor, M. J.; Haley, M. M. In Acetylene
Chemistry: Chemistry, Biology, and Materials Science; Diederich, F.,
Tykwinski, R. R., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany,
2004; pp 303-385.
(11) (a) Wan, W. B.; Haley, M. M. J. Org. Chem. 2001, 66, 3893-3901. (b)
Wan, W. B.; Brand, S. C.; Pak, J. J.; Haley, M. M. Chem.-Eur. J. 2000,
6, 2044-2052.
(12) Pak, J. J.; Weakley, T. J. R.; Haley, M. M. J. Am. Chem. Soc. 1999, 121,
8182-8192.
(5) Jayakannan, M.; Van Hal, P. A.; Janssen, R. A. J. J. Polym. Sci., Part A:
Polym. Chem. 2001, 40, 251-261.
(6) Tykwinski, R. R.; Schreiber, M.; Carlo´n, R. P.; Diederich, F.; Gramlich,
V. HelV. Chim. Acta 1996, 79, 2249-2280.
9
2464
J. AM. CHEM. SOC. 2005, 127, 2464-2476
10.1021/ja044175a CCC: $30.25 © 2005 American Chemical Society