Table 5 Experimental LFP rate constants
3 M. L. Steigerwald and W. A. Goddard III, J. Am. Chem. Soc., 1979,
101, 1997.
4 H. Y. Yoo, K. N. Houk, J. K. Lee and M. A. Scialdone, J. Am. Chem.
Soc., 1998, 120, 205.
Hydrogen Donor
kgl/104 MϪ1 sϪ1
5 H. Baumann and P. Chen, Helv. Chim. Acta, 2001, 84, 124.
6 S. R. Wilson, Org. React., 1993, 43, 93.
7 T. Cohen, M. Bhupathy and J. R. Matz, J. Am. Chem. Soc., 1983,
105, 520.
8 R. L. Danheiser, C. Martinez-Davila and H. Sard, Tetrahedron,
1981, 37, 3943.
9 S.-H. Kim, S. Y. Cho and J. K. Cha, Tetrahedron Lett., 2001, 42,
8769.
CF3CH2ONa
CF3CH2ONa
(CF3)2HCONa
(CF3)2HCONa
11.3 0.1
10.0 0.1
49.2 2.8
51.5 3.4
constants, kexp(320nm). The experimental rate constant is the sum
of the rate constants for all competitive processes.29
10 N. J. Harris and J. J. Gajewski, J. Am. Chem. Soc., 1994, 116,
6121.
Preparation of samples for laser flash photolysis. The
procedure of the “probe method” was described in detail
previously.29 1.5 cm3 of aqueous solutions (0.027 M) of IRf-
SO3Na in quartz cuvettes (8 × 8 mm) sealed with rubber septa
were deaerated by flushing with N2 during 20 minutes, then the
various amounts (50–300 µL) of deaerated aqueous solution of
H-atom donors were added with microliter syringe, and the
mixtures were vortexed during 20 seconds. The measurements
of the growth of the optical density at 320 nm during 6 to 9
pulses of 308 nm laser were recorded for each concentration of
H-atom donor. The transient growth traces of the radical were
analyzed by least-squares fitting, on the basis of pseudo-first-
11 R. E. Ireland, P. Wipf and J. D. Armstrong III, J. Org. Chem., 1991,
56, 650.
12 F. E. Ziegler, Chem. Rev., 1988, 88, 1423.
13 L. A. Paquette, G. D. Crouse and A. K. Sharma, J. Am. Chem. Soc.,
1980, 102, 3972.
14 P. J. Battye and D. W. Jones, Chem. Commun., 1984, 990.
15 A. B. Shtarev, F. Tian, W. R. Dolbier Jr. and B. E. Smart, J. Am.
Chem. Soc., 1999, 121, 7335.
16 L. Zhang, J. Cradlebaugh, G. Litwinienko, B. E. Smart, K. U. Ingold
and W. R. Dolbier Jr., Org. Biomol. Chem., 2004, 2, 689.
17 L. Zhang, The Addition and Hydrogen Abstraction Reactions of
a Fluorinated Radical in Aqueous Solution, Ph. D. Dissertation,
University of Florida, Gainesville, 2001.
18 J. F. Bunnett, Acc. Chem. Res., 1992, 25, 2.
19 See also: S. E. Vaillard, A. Postigo and R. A. Rossi, J. Org. Chem.,
2004, 69, 2037.
20 W. J. Boyle Jr. and J. F. Bunnett, J. Am. Chem. Soc., 1974, 96, 1418.
21 C. M. Timperley and W. E. White, J. Fluorine Chem., 2003, 123, 65.
22 There is some uncertainty about the pKa of trifluoroisopropanol,
but one would expect it to be slightly less acidic than trifluoro-
ethanol.21
23 Both H-bonding and, particularly, ion pairing (with the metal
counterion) are known to cause large variations in alkoxide-
accelerated rate constants.10 Indeed kinetic studies on alkoxide-
accelerated sigmatropic processes10 have shown that anything that
influences the degree of free charge on the alkoxide will significantly
influence the degree of acceleration provided by the alkoxide.
24 J. Cradlebaugh, L. Zhang, A. B. Shtarev, B. E. Smart and
W. R. Dolbier Jr., Org. Biomol. Chem., 2004, DOI: 10.1039/
b405075d (following paper).
25 J. L. Kurz and M. A. Stein, J. Phys. Chem., 1976, 80, 154.
26 L. Zhang, W. R. Dolbier Jr., B. Sheeller and K. U. Ingold, J. Am.
Chem. Soc., 2002, 124, 6362.
27 S. Kazanis, A. Azarani and L. J. Johnston, J. Phys. Chem., 1991, 95,
4430.
28 D. V. Avila, K. U. Ingold, J. Lusztyk, W. R. Dolbier Jr., H. Q. Pan
and M. Muir, J. Am. Chem. Soc., 1994, 116, 99.
29 H. Paul, R. D. Small Jr. and J. C. Scaiano, J. Am. Chem. Soc., 1978,
100, 4520.
30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador,
J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,
S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W.
Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and
J. A. Pople, Gaussian 03, Revision B.04, Gaussian, Inc., Pittsburgh
PA, 2003.
order kinetics, to obtain experimental rate constants, kexp(320nm)
.
Kinetics measurements using the “spectroscopic probe
method”. The observed experimental rate constant is a sum of
the rate constants of competitive processes:
kexp(320 nm) = ko ϩ kprobe[probe] ϩ kgl [H-donor]
thus, if [probe] = constant, the kexp(320
= kЈ ϩ kgl [H-donor].
nm)
Indeed, values of (kexp(320
Ϫ kprobe[probe]) plotted vs.
nm)
[H-donor] gave straight line fits with R2 greater than 0.96 in
almost all cases (see ESI†) and the absolute second order rate
constants kgl for RfSO3Ϫ reaction with the H-atom donors were
ؒ
obtained. The rate constants kgl for the alkoxide donors in
aqueous solutions are listed in Table 5.
Computational
The geometries of methanol, propanol, isopropanol, and their
corresponding α-hydroxy radicals were optimized at the
B3LYP/6-31G(d) level. Single point energies were then calcu-
lated at the B3LYP/6-311ϩG(2df,2p) level. The restricted
B3LYP was used for closed-shell systems and the unrestricted
method for open shell systems. All the calculations were
performed by using the Gaussian-03 suite of programs.30
An accepted value from experiment for the C–H dissociation
is D298 = 94
G-311GϩG(3df,2p)//MP2/6-31G*) by the late John Pople
predicted D298 = 96.2 kcal molϪ1 31
2 kcal molϪ1 and calculations (QCISD(T)/
.
Acknowledgements
Support of this research in part by the National Science
Foundation is acknowledged with thanks.
References and notes
1 D. A. Evans and A. M. Golob, J. Am. Chem. Soc., 1975, 97, 4765.
2 D. A. Evans, D. J. Baillargeon and J. V. Nelson, J. Am. Chem. Soc.,
1978, 100, 2242.
31 L. A. Curtiss, L. D. Kock and J. A. Pople, J. Chem. Phys., 1991, 95,
4040.
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2, 2 0 8 3 – 2 0 8 6
2086