mmol) in CH2Cl2 (80 cm3) were stirred at rt, shielded from
direct light for ca. 20 h. The dark red suspension was filtered
through a column of Celite, giving a deep red filtrate which was
concentrated to ca. 10 cm3. Hexane was added to crystallize
the compound, complex 1 (Yield, 0.5143 g, 95%). (Found: C,
48.68; H, 2.52%. C40H28F10O4P2Pd requires C, 48.40; H, 2.86%).
νmax/cmϪ1 (RCO2Ϫ) 1688 vs and 1325 s (KBr); δH (CDCl3) 4.44
Acknowledgements
We acknowledge the National University of Singapore for
financial support (RP 143–000–013–112) and technical
assistance from our Department. We thank G. K. Tan for
assistance with the X-ray analysis. Y. C. Neo is grateful to NUS
for a research scholarship.
3
[4 H, d, J(PH) 1.6 Hz, C5H4]; 4.50 (4 H, s, C5H4); 7.36–7.42
(8 H, m, Ph); 7.50–7.56 (4 H, m, Ph) and 7.77–7.85 (8 H, m,
Ph); δP (CDCl3) 36.48 (s); δF (CDCl3) Ϫ7.73 (6 F, s, CF3) and
Ϫ43.90 (4 F, s, CF2).
References
1 C. Oldham, in Comprehensive Coordination Chemistry, eds.
G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon,
Oxford, 1987, vol. 2, ch. 15.6, p. 435.
Synthesis of PdAg(ꢀ-O2CCF2CF3)2(O2CCF2CF3-O)(dppf ) 2.
AgO2CCF2CF3 (0.0166 g, 0.0613 mmol) was added to a solu-
tion of Pd(O2CCF2CF3)2(dppf ) 1 (0.0600 g, 0.0608 mmol) in
CH2Cl2 (10 cm3). The mixture was stirred for 30 min, shielded
from direct light. The mixture was then filtered to remove the
insoluble Ag particles. Purplish black coloured crystals of 2ؒ
2H2O were collected (0.0692 g, 88%) after slow diffusion of the
filtrate through a layer of hexane with shielding from direct
light. (Found: C, 39.44; H, 2.09%. C43H32AgF15FeO8P2Pd
requires C, 39.92; H, 2.49%). νmax/cmϪ1 (RCO2Ϫ) 1715 sh, 1690
vs, 1586 m, 1574 m, 1436 s, 1401 s and 1326 m (KBr);
δH (CDCl3) 4.54 (4 H, s, C5H4); 4.61 (4 H, s, C5H4); 7.44–7.48
(8 H, m, Ph); 7.56–7.61 (4 H, m, Ph) and 7.82–7.89 (8 H, m,
Ph); δP (CDCl3) 40.44 (s); δF (CDCl3) Ϫ7.54 (9 F, s, CF3) and
Ϫ43.01 (6 F, s, CF2).
2 (a) C. Amatore, A. Jutand and M. A. M’Barki, Organometallics,
1992, 11, 3009; (b) C. Amatore, E. Carré, A. Jutand and M. A.
M’Barki, Organometallics, 1995, 14, 1818; (c) C. Amatore, E. Carré,
A. Jutand, M. A. M’Barki and G. Meyer, Organometallics, 1995, 14,
5605; (d ) C. Amatore and A. Jutand, J. Organomet. Chem., 1999,
576, 254; (e) C. Amatore and A. Jutand, Acc. Chem. Res., 2000, 33,
314; ( f ) F. Ozawa, A. Kubo and T. Hayashi, Chem. Lett., 1992,
2177.
3 S. J. Coles, P. G. Edwards, M. B. Hursthouse, K. M. A. Malik,
J. L. Thick and R. P. Tooze, J. Chem. Soc., Dalton Trans., 1997, 1821.
4 A. Behr, R. He, K.-D. Juszak, C. Krüger and Y.-H. Tsay, Chem. Ber.,
1986, 119, 991.
5 W. Clegg, G. R. Eastham, M. R. J. Elsegood, R. P. Tooze,
X. L. Wang and K. Whiston, Chem. Commun., 1999, 1877.
6 M. Sperrle, V. Gramlick and G. Consiglio, Organometallics, 1996,
15, 5196.
7 D. Wink, Acta Crystallogr., Sect. C, 1990, 40, 56.
8 (a) C. J. Nyman, C. T. Wymore and G. Wilkinson, J. Chem. Soc. A,
1968, 561; (b) C. Eaborn, K. J. Odell and A. Pidcock, J. Chem. Soc.,
Dalton Trans., 1979, 758; (c) M. J. Broadhurst, J. M. Brown and
R. A. John, Angrew. Chem., Int. Ed. Engl., 1983, 22, 47; (d ) G. K.
Anderson and G. J. Lumetta, Inorg. Chem., 1987, 26, 1291.
9 A. L. Tan, P. M. N. Low, Z. Zhou, W. Zheng, B. Wu, T. C. W. Mak
and T. S. A. Hor, J. Chem. Soc., Dalton Trans., 1996, 2207.
10 C. Bird, B. L. Booth, R. N. Haszeldine, G. R. H. Neuss, M. A. Smith
and A. Flood, J. Chem. Soc., Dalton Trans., 1982, 1109.
11 A. L. Balch, B. J. Davis, E. Y. Fung and M. M. Olmstead, Inorg.
Chim. Acta, 1993, 212, 149.
Synthesis of PdAg2(ꢀ-O2CCF2CF3)2(O2CCF2CF3-O)2(dppf ) 3.
PdAg(O2CCF2CF3)3(dppf )ؒ2H2O (0.050 g, 0.0386 mmol)
and AgO2CEtF (0.0108 g, 0.0386 mmol) were allowed to
stir in CH2Cl2 (20 cm3) for 30 min, shielded from direct light.
The reaction mixture was then dried in vacuo. The product 3
was recrystallized in CH2Cl2–hexane. Yield, 0.053 g (87%).
(Found: C, 36.19; H, 1.90%. C46H28Ag2F20FeO8P2Pd requires C,
36.14; H, 1.85%). νmax/cmϪ1 (RCO2Ϫ) 1681 vs, 1635 sh, 1575
w, 1558 w, 1481 m, 1436 s, 1409 s, 1327 vs (KBr); δH (CDCl3)
4.56 (4 H, s, C5H4); 4.64 (4 H, s, C5H4); 7.44–7.52 (8 H, m, Ph);
7.56–7.61 (4 H, m, Ph) and 7.82–7.90 (8 H, m, Ph); δP (CDCl3)
41.95 (s); δF (CDCl3) Ϫ7.54 (12 F, s, CF3) and Ϫ43.01 (8 F,
s, CF2).
12 (a) T. S. A. Hor, S. P. Neo, C. S. Tan, T. C. W. Mak, K. W. P. Leung
and R.-J. Wang, Inorg. Chem., 1992, 31, 4510; (b) S. P. Neo,
Z. Y. Zhou, T. C. W. Mak and T. S. A. Hor, Inorg. Chem., 1995, 34,
520.
13 J. Forniés, A. Martín, V. Sicilia and P. Villarroya, Organometallics,
2000, 19, 1107.
14 (a) W. A. Herrmann, C. Brossmer, K. Öfele, C. Reisinger,
T. Priermeier, M. Beller and H. Fischer, Angew. Chem., Int. Ed.
Engl., 1995, 34, 17, 1844; (b) I. Ara, L. R. Falvello, J. Forniés, V.
Sicilia and P. Villarroya, Organometallics, 2000, 19, 3091.
15 K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, John Wiley and Sons, 1986, 4th edn.,
p. 232.
16 K. S. Gan and T. S. A. Hor, in Ferrocene–Homogeneous Catalysis,
Organic Syntheses and Materials Science, eds. A. Togni and
T. Hayashi, VCH, Weinheim, 1995, ch. 1 p. 3.
17 T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer and
G. Wilkinson, J. Chem. Soc., 1965, 3632.
18 (a) B. Milani, E. Alessio, G. Mestroni, A. Sommazzi, F. Garbassi,
E. Zangrando, N. Bresciani-Pahor and L. Randaccio, J. Chem. Soc.,
Dalton Trans., 1994, 1903; (b) B. Milani, E. Alessio, G. Mestroni,
E. Zangrando, L. Randaccio and G. Consiglio, J. Chem. Soc.,
Dalton Trans., 1996, 1021.
19 (a) D. P. Bancroft, F. A. Cotton and M. Verbruggen, Acta
Crystallogr., Sect. C, 1989, 45, 1289; (b) S. V. Kravtsova, I. P. Romm,
A. I. Stash and V. K. Belsky, Acta Crystallogr., Sect. C, 1996, 52,
2201; (c) S. B. Halligudi, K. N. Bhatt, N. H. Khan, R. I. Kurashy
and K. Venkatsubramanian, Polyhedron, 1996, 15, 12, 2093.
20 G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.
21 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and
K. Hirotsu, J. Am. Chem. Soc., 1984, 106, 158.
22 SMART and SAINT Software Reference Manuals, Version 5.611,
Bruker Analytical X-Ray Systems, Inc., Madison, WI, 2000.
23 G. M. Sheldrick, SADABS, software for empirical absorption
correction, University of Göttingen, 2000.
Crystal structure determinations
The diffraction experiments were carried out on a Bruker
SMART CCD diffractometer with a Mo-Kα sealed tube at
Ϫ50 ЊC. The program SMART22 was used for collecting frames
of data, indexing reflections and determination of lattice
parameters, SAINT22 for integration of the intensity of reflec-
tions and scaling, SADABS23 for absorption correction and
SHELXTL24 for space group and structure determination and
least-squares refinements on F 2. The relevant crystallographic
data and refinement details are shown in Table 1. Compound 2
crystallized with two molecules of H2O and the F atoms are
severely disordered. The three F atoms attached to C(13) were
found to be disordered. Two disorder models (occupancies
0.6 and 0.4) were resolved and included in the least-squares
refinement cycles. Individual isotropic thermal parameters were
refined for the F atoms with occupancies 0.6 and a common
isotropic thermal parameter was refined for the minor com-
ponent. Two independent orientations were found for one CF2–
CF3 group [attached to C(14)] with occupancies 50 : 50. Com-
mon isotropic thermal parameters were refined for these dis-
ordered atoms. The F atoms attached to C(19) were disordered.
Two orientations of F atoms were included in the model. Of the
two water molecules found in the lattice, one was disordered
with an occupancy of 50 : 50.
24 SHELXTL Reference Manual, Version 5.1, Bruker Analytical
X-Ray Systems, Inc., Madison, WI, 1997.
25 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National
Laboratory, Oak Ridge, TN, 1976.
CCDC reference numbers 165079 and 165080.
lographic data in CIF or other electronic format.
342
J. Chem. Soc., Dalton Trans., 2002, 337–342