10.1002/anie.202011163
Angewandte Chemie International Edition
RESEARCH ARTICLE
[2]
[3]
G. C. R. Ellis-Davies, Nat Methods 2007, 4, 619-628.
CES1 and CES2 as possible targets for pharmaceutical
intervention beyond drug metabolism.
a) X. Chen, S. Wehle, N. Kuzmanovic, B. Merget, U. Holzgrabe, B.
Konig, C. A. Sotriffer, M. Decker, ACS Chem Neurosci 2014, 5,
377-389; b) J. Broichhagen, I. Jurastow, K. Iwan, W. Kummer, D.
Trauner, Angew Chem Int Edit 2014, 53, 7657-7660; c) P. R.
Westmark, J. P. Kelly, B. D. Smith, J Am Chem Soc 1993, 115,
3416-3419; d) A. J. Harvey, A. D. Abell, Tetrahedron 2000, 56,
9763-9771; e) D. Pearson, A. D. Abell, Org Biomol Chem 2006, 4,
3618-3625; f) D. Pearson, N. Alexander, A. D. Abell, Chemistry
2008, 14, 7358-7365; g) A. D. Abell, M. A. Jones, A. T. Neffe, S.
G. Aitken, T. P. Cain, R. J. Payne, S. B. McNabb, J. M. Coxon, B.
G. Stuart, D. Pearson, H. Y. Y. Lee, J. D. Morton, J Med Chem
2007, 50, 2916-2920.
a) W. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker, B.
L. Feringa, Chemistry 2015, 21, 16517-16524; b) L. Albert, J. Xu,
R. W. Wan, V. Srinivasan, Y. L. Dou, O. Vazquez, Chemical
Science 2017, 8, 4612-4618; c) R. Mogaki, K. Okuro, T. Aida, J
Am Chem Soc 2017, 139, 10072-10078.
a) A. Acosta-Ruiz, V. A. Gutzeit, M. J. Skelly, S. Meadows, J. Lee,
P. Parekh, A. G. Orr, C. Liston, K. E. Pleil, J. Broichhagen, J.
Levitz, Neuron 2020, 105, 446-463 e413; b) W. C. Lin, M. C. Tsai,
R. Rajappa, R. H. Kramer, J Am Chem Soc 2018, 140, 7445-7448;
c) S. Berlin, S. Szobota, A. Reiner, E. C. Carroll, M. A. Kienzler, A.
Guyon, T. Xiao, D. Trauner, E. Y. Isacoff, Elife 2016, 5; d) R.
Ferreira, J. R. Nilsson, C. Solano, J. Andreasson, M. Grotli, Sci
Rep 2015, 5, 9769; e) M. Borowiak, W. Nahaboo, M. Reynders, K.
Nekolla, P. Jalinot, J. Hasserodt, M. Rehberg, M. Delattre, S.
Zahler, A. Vollmar, D. Trauner, O. Thorn-Seshold, Cell 2015, 162,
403-411; f) M. Borowiak, F. Kullmer, F. Gegenfurtner, S. Peil, V.
Nasufovic, S. Zahler, O. Thorn-Seshold, D. Trauner, H. D. Arndt, J
Am Chem Soc 2020, 142, 9240-9249.
a) A. Damijonaitis, J. Broichhagen, T. Urushima, K. Hull, J. Nagpal,
L. Laprell, M. Schonberger, D. H. Woodmansee, A. Rafiq, M. P.
Sumser, W. Kummer, A. Gottschalk, D. Trauner, ACS Chem.
Neurosci. 2015, 6, 701-707; b) M. Schoenberger, A. Damijonaitis,
Z. Zhang, D. Nagel, D. Trauner, ACS Chem. Neurosci. 2014, 5,
514-518.
a) D. Wang, L. Zou, Q. Jin, J. Hou, G. Ge, L. Yang, Acta Pharm
Sin B 2018, 8, 699-712; b) S. C. Laizure, V. Herring, Z. Hu, K.
Witbrodt, R. B. Parker, Pharmacotherapy 2013, 33, 210-222; c) M.
J. Hatfield, R. A. Umans, J. L. Hyatt, C. C. Edwards, M. Wierdl, L.
Tsurkan, M. R. Taylor, P. M. Potter, Chem Biol Interact 2016, 259,
327-331.
a) A. Adibekian, B. R. Martin, C. Wang, K. L. Hsu, D. A.
Bachovchin, S. Niessen, H. Hoover, B. F. Cravatt, Nature
Chemical Biology 2011, 7, 469-478; b) A. Adibekian, B. R. Martin,
J. W. Chang, K. L. Hsu, K. Tsuboi, D. A. Bachovchin, A. E. Speers,
S. J. Brown, T. Spicer, V. Fernandez-Vega, J. Ferguson, P. S.
Hodder, H. Rosen, B. F. Cravatt, J Am Chem Soc 2012, 134,
10345-10348.
a) C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. White, M.
J. Fuchter, J Am Chem Soc 2014, 136, 11878-11881; b) L.
Stricker, E. C. Fritz, M. Peterlechner, N. L. Doltsinis, B. J. Ravoo,
J. Am. Chem. Soc. 2016, 138, 4547-4554.
D. Leung, C. Hardouin, D. L. Boger, B. F. Cravatt, Nat Biotechnol
2003, 21, 687-691.
Using light to spatially or temporally deactivate the
administered E-isomers of our CES inhibitors may create
exciting opportunities of spatiotemporal control over prodrug
activation and/or drug metabolism in clinical settings. Many
medication side effects are caused by high circulating
concentrations of the drug in the human body. For example,
high concentrations of SN-38, the active, hydrolyzed form of
irinotecan, can cause life-threatening enterocolitis and
diarrhea in cancer patients.[25] Stepwise activation of CES
activity in the liver and colon through E-Z conversion or, in
case of acute onset of gastrointestinal symptoms, rapid on-
demand deactivation of CES by Z-E photoisomerization of our
inhibitor may reduce the circulating concentration and
accumulation of SN-38 in colon and prevent these severe side
effects.
[4]
[5]
Covalent inhibitors offer several advantages over
reversible drugs[26] and there has been a resurgence in the
development of covalent drugs.[26a] Yet having reversible CES
inhibitors with optical control to allow repeated cycling
between active and inactive states may be desirable in basic
drug metabolism research. Herein, we successfully obtained
a reversible CES inhibitor by replacing the carbonyl group in
inhibitor 4 with a less electrophilic sulfone, demonstrating a
novel strategy for the design of reversible serine hydrolase
inhibitors starting from covalent compounds. Indeed, the
sulfone-based inhibitor 16 enabled repeated cycling between
the active and inactive conformations in our MMF metabolism
experiment.
[6]
[7]
[8]
Serine hydrolases are a large and functionally very
diverse class of enzymes with more than 200 different
members expressed in the human proteome.[27] Our
arylazopyrazole ureas and sulfones offer synthetically
accessible scaffolds that can be expanded to a larger library
with hundreds of compounds to identify specific
photoswitchable inhibitors for other serine hydrolases,
including lipases, peptidases, and proteases. As a result, it is
conceivable that our approach may potentiate optical control
over proteolysis, lipid homeostasis, peptide hormone
signaling, and many other serine hydrolase-regulated
metabolic processes of fundamental significance to the cell.
[9]
[10]
[11]
[12]
[13]
C. Wang, D. Abegg, B. G. Dwyer, A. Adibekian, Chembiochem
2019, 20, 2212-2216.
D. D. Wang, L. W. Zou, Q. Jin, J. Hou, G. B. Ge, L. Yang,
Fitoterapia 2017, 117, 84-95.
Finally, our chemoproteomic platform can be expanded
to other scaffolds and photoswitches to enable optical control
of other protein classes. These studies are currently underway
and will be reported in due course. Projecting forward, we
strongly believe that the herein presented platform will be a
valuable tool for future development of photopharmaceuticals.
M. Uhlen, L. Fagerberg, B. M. Hallstrom, C. Lindskog, P. Oksvold,
A. Mardinoglu, A. Sivertsson, C. Kampf, E. Sjostedt, A. Asplund, I.
Olsson, K. Edlund, E. Lundberg, S. Navani, C. A. Szigyarto, J.
Odeberg, D. Djureinovic, J. O. Takanen, S. Hober, T. Alm, P. H.
Edqvist, H. Berling, H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J.
M. Schwenk, M. Hamsten, K. von Feilitzen, M. Forsberg, L.
Persson, F. Johansson, M. Zwahlen, G. von Heijne, J. Nielsen, F.
a) M. J. Hatfield, P. M. Potter, Expert Opin Ther Pat 2011, 21,
1159-1171; b) L. W. Zou, Q. Jin, D. D. Wang, Q. K. Qian, D. C.
Hao, G. B. Ge, L. Yang, Curr Med Chem 2018, 25, 1627-1649; c)
D. A. Bachovchin, T. Y. Ji, W. W. Li, G. M. Simon, J. L. Blankman,
A. Adibekian, H. Hoover, S. Niessen, B. F. Cravatt, P Natl Acad
Sci USA 2010, 107, 20941-20946.
Acknowledgements
[14]
[15]
We thank The Scripps Research Institute for financial support.
Keywords: carboxylesterases • drug discovery • inhibitors •
photopharmacology • proteomics
S. Macintyre, D. Samols, P. Dailey, J. Biol. Chem. 1994, 269,
24496-24503.
[16]
[17]
T. Imai, K. Ohura, Curr Drug Metab 2010, 11, 793-805.
a) H. J. Zhu, J. S. Markowitz, Drug Metab Dispos 2009, 37, 264-
267; b) H. J. Zhu, X. W. Wang, B. E. Gawronski, B. J. Brinda, D. J.
Angiolillo, J. S. Markowitz, J Pharmacol Exp Ther 2013, 344, 665-
672; c) K. Nishi, H. Z. Huang, S. G. Kamita, I. H. Kim, C.
Morisseau, B. D. Hammock, Arch Biochem Biophys 2006, 445,
[1]
a) K. Hüll, J. Morstein, D. Trauner, in Chemical Reviews, Vol. 118,
2018, pp. 10710-10747; b) J. Broichhagen, J. A. Frank, D.
Trauner, Acc Chem Res 2015, 48, 1947-1960; c) M. M. Lerch, M.
J. Hansen, G. M. van Dam, W. Szymanski, B. L. Feringa, Angew.
Chem. Int. Ed. Engl. 2016, 55, 10978-10999.
This article is protected by copyright. All rights reserved.