Paper
RSC Advances
16 Y. Kumatabara, M. Okada and S. Shirakawa, ACS Sustain.
Chem. Eng., 2017, 5, 7295–7301.
Conclusions
17 J. Steinbauer, L. Longwitz, M. Frank, J. Epping, U. Kragl and
T. Werner, Green Chem., 2017, 19, 4435–4445.
18 M. North, R. Pasquale and C. Young, Green Chem., 2010, 12,
1514.
19 G. Fiorani, W. Guo and A. W. Kleij, Green Chem., 2015, 17(3),
1375–1389.
20 F. D. Bobbink and P. J. Dyson, J. Catal., 2016, 343, 52–61.
21 J. K. Lee, Y. J. Kim, Y. S. Choi, H. Lee, J. S. Lee, J. Hong,
E. K. Jeong, H. S. Kim and M. Cheong, Appl. Catal. B
Environ., 2012, 111–112, 621–627.
A series of novel DMOs, OMOs and PMOs were prepared,
characterized and screened against the cycloaddition reaction
of CO2 and epoxides. Results showed that OMOs were the most
active class of all materials. Furthermore, OMO-2, containing
two hydroxyl groups per immobilized molecule was found to be
the most active material. For substrates which are easy to acti-
vate such as PO, 1,2-EB and ECH, excellent yield and selectivity
were obtained under mild reaction conditions (0.5 MPa CO2,
50 ꢀC and 10–15 h). However, higher CO2 pressure and
temperature were required with substrates which are more
difficult to activate, e.g. SO, CHO and GPS. Furthermore, OMO-2
proved to be both chemically and structurally stable aer ve
cycles of 1,2-EB synthesis.
´
22 C. Martın, G. Fiorani and A. W. Kleij, ACS Catal., 2015, 5,
1353–1370.
23 Y. Ren, O. Jiang, H. Zeng, Q. Mao and H. Jiang, RSC Adv.,
2016, 6, 3243–3249.
24 A. J. Kamphuis, F. Picchioni and P. P. Pescarmona, Green
Chem., 2019, 21, 406–448.
Conflicts of interest
25 T. Sakai, Y. Tsutsumi and T. Ema, Green Chem., 2008, 10,
337.
There are no conicts to declare.
26 F. Adam, J. N. Appaturi and E. P. Ng, J. Mol. Catal. A Chem.,
2014, 386, 42–48.
Acknowledgements
27 B. Chatelet, L. Joucla, J.-P. Dutasta, A. Martinez and
V. Dufaud, J. Mater. Chem. A, 2014, 2, 14164.
28 X. D. Lang and L. N. He, Chem. Rec., 2016, 1337–1352.
29 S. Udayakumar, V. Raman, H. L. Shim and D. W. Park, Appl.
Catal. Gen., 2009, 368, 97–104.
Financial support from the Natural Sciences and Engineering
Research Council of Canada (NSERC) is gratefully
acknowledged.
30 S. Udayakumar, S. W. Park, D. W. Park and B. S. Choi, Catal.
Commun., 2008, 9, 1563–1570.
References
1 H. Ritchie and M. Roser, Our World Data, 2017.
2 IPCC, Intergov. Panel Clim. Chang., 2018, pp. 1–32.
31 E. A. Prasetyanto, M. B. Ansari, B. H. Min and S. E. Park,
Catal. Today, 2010, 158, 252–257.
3 E. I. Koytsoumpa, C. Bergins and E. Kakaras, J. Supercrit. 32 M. Liu, X. Lu, L. Shi, F. Wang and J. Sun, ChemSusChem,
Fluids, 2018, 132, 3–16. 2017, 10, 1110–1119.
4 J. Luis Mıguez, J. Porteiro, R. Perez-Orozco, D. Patino and 33 J. Peng, S. Wang, H. J. Yang, B. Ban, Z. Wei, L. Wang and
´
´
˜
´
S. Rodrıguez, Appl. Energy, 2018, 211, 1282–1296.
B. Lei, Fuel, 2018, 224, 481–488.
5 C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song and 34 X. Zhang, W. Geng, C. Yue, W. Wu and L. Xiao, J. Environ.
H. Li, Renewable Sustainable Energy Rev., 2018, 82(Part 1),
215–231.
6 M. Aresta, A. Dibenedetto and E. Quaranta, J. Catal., 2016,
343, 2–45.
Chem. Eng., 2016, 4, 2565–2572.
35 J. Zhu, K. Kailasam, X. Xie, R. Schomaecker and A. Thomas,
Chem. Mater., 2011, 23, 2062–2067.
36 R. Serna-guerrero, E. Da and A. Sayari, Ind. Eng. Chem. Res.,
2008, 47, 9406–9412.
7 M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann
¨
¨
¨
and F. E. Kuhn, ChemSusChem, 2015, 8, 2436–2454.
37 B. Lindlar, M. Luchinger, A. Rothlisberger, M. Haouas,
G. Pirngruber, A. Kogelbauer and R. Prins, J. Mater. Chem.,
2002, 12, 528–533.
8 J. W. Comerford, I. D. V. Ingram, M. North and X. Wu, Green
Chem., 2015, 17, 1966–1987.
9 M. North, in New and Future Developments in Catalysis - 38 X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu and
Activation of Carbon Dioxide, Elsevier B.V., 2013, pp. 379–413.
10 J. M. Kolle and A. Sayari, J. CO2 Util., 2018, 26, 564–574.
K. M. Kemner, Science, 1997, 276, 923–926.
39 E. Da'na and A. Sayari, Chem. Eng. J., 2011, 166, 445–453.
¨
11 H. Buttner, K. Lau, A. Spannenberg and T. Werner, 40 M. Barczak, New J. Chem., 2018, 42, 4182–4191.
¨
ChemCatChem, 2015, 7, 459–467.
41 C. Knofel, M. Lutecki, C. Martin, M. Mertens, V. Hornebecq
¨
12 H. Buttner, J. Steinbauer and T. Werner, ChemSusChem,
and P. L. Llewellyn, Microporous Mesoporous Mater., 2010,
128, 26–33.
2015, 8, 2655–2669.
13 L. Wang, L. Lin, G. Zhang, K. Kodama, M. Yasutake and 42 R. E. Mishler, A. V. Biradar, C. T. Duncan, E. A. Schiff and
T. Hirose, ChemComm., 2014, 50, 14813–14816. T. Asefa, Chem. Commun., 2009, 6201–6203.
14 X. F. Liu, Q. W. Song, S. Zhang and L. N. He, Catal. Today, 43 H. H. Oc and K. B. Yoon, Bull. Korean Chem. Soc., 2008, 29,
2016, 263, 69–74. 911–912.
15 A. Siewniak, K. Jasiak and S. Baj, Appl. Catal. Gen., 2014, 482, 44 C. Li, J. Yang, X. Shi, J. Liu and Q. Yang, Microporous
266–274.
Mesoporous Mater., 2007, 98, 220–226.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 24527–24538 | 24537