M. L. Meketa et al. / Tetrahedron Letters 46 (2005) 4749–4751
4751
10–13% v/v, Aldrich). The mixture was stirred for 1 h at
0 °C, then poured into saturated Na2CO3 solution and
extracted with CH2Cl2. The combined organic layers were
dried (MgSO4) and concentrated in vacuo. The crude
product was purified by flash chromatography on silica gel
(hexanes/ethyl acetate, 10:1) to afford the monochlori-
nated product. Dichlorination was effected using the same
procedure with 3.60 mmol of sodium hypochlorite.
Cl
Cl
HOAc
Me2CO
Cl
Cl
Cl
Cl
+
O
O
O
N
N
N
H
0 o
C
H
Cl
16
18 %
17
70 %
15
4.5 equiv NaOCl
6.0 equiv NaOCl
0%
98 %
Brominations were conducted as described above using
freshly prepared sodium hypobromite solution. A solution
of sodium hypobromite was prepared by slowly adding
bromine (0.85 mL, 16.6 mmol) to a solution of sodium
hydroxide (2.0 g, 50.0 mmol) in water (25 mL) at 0 °C. The
mixture was stirred for 15 min and used immediately.
Spectral data for new compounds—6: 1H NMR (300
MHz, CDCl3) d 1.28 (t, J = 7.1 Hz, 3H), 4.31 (q, J = 7.1
Hz, 2H), 4.78 (s, 2H), 5.42 (d, J = 2.0 Hz, 1H), 5.50 (d,
J = 2.0 Hz, 1H); 13C NMR (75 MHz, CDCl3) d 162.8,
162.5, 134.2, 117.0, 69.4, 65.3, 65.1, 14.1. 7: 1H NMR
(400 MHz, CDCl3) d 1.29 (t, J = 7.1 Hz, 3H), 2.08 (s, 3H),
3.90 (d, J = 12.1 Hz, 1H), 4.34 (m, 3H), 4.74 (d, J = 2.1 Hz,
2H); 13C NMR (75 MHz, CDCl3) d 169.2, 164.3, 163.6,
96.4, 79.2, 69.5, 67.0, 47.5, 23.5, 15.7. 8: 1H NMR
(300 MHz, CDCl3) d 1.31 (t, J = 7.1 Hz, 3H), 4.12 (s,
2H), 4.34 (q, J = 7.1 Hz, 2H), 5.05 (s, 2H); 13C NMR
(100 MHz, CDCl3) d 194.7, 162.8, 162.7, 69.3, 65.5, 45.9,
30.1, 14.1. 10: 1H NMR (300 MHz, CDCl3) d 1.23 (t,
J = 7.1 Hz, 3H), 1.40 (d, J = 7.3 Hz, 3H), 3.51 (q,
J = 7.3 Hz, 1H), 4.15 (m, 4H), 4.95 (s, 2H); 13C NMR
(75 MHz, CDCl3) d 194.9, 168.5, 168.4, 66.0, 60.8, 44.8,
44.7, 13.0, 12.6. 11: 1H NMR (300 MHz, CDCl3) d 1.21 (t,
J = 7.1 Hz, 3H), 1.39 (d, J = 7.3 Hz, 3H), 2.08 (s, 3H), 3.44
(q, J = 7.3 Hz, 1H), 3.91 (d, J = 2.0 Hz, 1H), 4.16 (q,
J = 7.1 Hz, 2H), 4.39 (d, J = 2.0 Hz, 1H), 4.57 (m, 2H);
13C NMR (100 MHz, CDCl3) d 169.8, 169.1, 167.7, 95.5,
65.8, 62.1, 46.4, 46.0, 21.9, 14.5, 13.9; ESI (+/À): [M+Na]+
calcd for C11H16O6Cl2Na, 337.0; found 337.0. 13: 1H
NMR (300 MHz, CDCl3) d 1.23 (t, J = 7.1 Hz, 3H), 1.42
(d, J = 7.2 Hz, 3H), 2.90 (m, 4H), 3.57 (q, J = 7.2 Hz, 1H),
4.17 (s, 2H), 4.23 (q, J = 7.1 Hz, 2H); 13C NMR (75 MHz,
CDCl3) d 204.5, 201.5, 170.5, 61.7, 52.9, 48.4, 35.4, 33.5,
14.3, 13.0. 14: 1H NMR (400 MHz, CDCl3) d 1.23 (t,
J = 7.2 Hz, 3H), 1.79 (s, 3H), 2.82 (m, 2H), 2.97 (m, 1H),
3.18 (m, 1H), 4.09 (s, 2H), 4.21 (q, J = 7.1 Hz, 2H); ESI
(+/À): [M+Na]+ calcd for C10H14O4Cl2Na, 291.0; found
291.0. 16: 1H NMR (360 MHz, CDCl3) d 6.89 (d,
J = 8.4 Hz, 1H), 7.29 (dd, J = 8.4, 2.1 Hz, 1H), 7.54 (d,
J = 2.1 Hz, 1H), 9.12 (s, 1H); 13C NMR (90 MHz, CDCl3)
d 171.2, 136.7, 132.5, 131.4, 130.2, 125.9, 112.9, 74.2; ESI
(+/À): [M+H]+ calcd for C8H3NOCl3, 233.928; found
233.928. 17: 1H NMR (360 MHz, CDCl3) d 6.98 (d,
J = 8.4 Hz, 1H), 7.40 (dd, J = 8.4, 2.0 Hz, 1H), 7.55 (d,
J = 2.0 Hz, 1H); 13C NMR (90 MHz, CDCl3) d 163.9,
137.9, 132.7, 131.5, 130.3, 125.6, 111.8, 72.3; ESI (+/À):
[M+H]+ calcd for C8H4NOCl4, 267.890; found 267.890.
11. A few N-substituted oxindoles have previously been
chlorinated at C-3 with calcium hypochlorite: Stolle, R.;
Bergdoll, R.; Luther, M.; Auerheim, A.; Wacker, W. J.
Prakt. Chem. 1930, 128, 1.
Scheme 3.
In conclusion, we have described a mild, convenient
and inexpensive method for the bromination and chlo-
rination of a variety of 1,3-dicarbonyl compounds.
These reactions occur rapidly at 0 °C and provide the
halogenated products in high yields. Although a pleth-
ora of reagents and reaction conditions have been
reported for halogenation of dicarbonyl compounds,
many involve the use of a base to initially deprotonate
the substrate.1 The procedure outlined here allows one
to effect this transformation under mild acidic condi-
tions, and should provide a good alternative to existing
methodology.
Acknowledgements
We are grateful to the National Institutes of Health
(GM-32299) for financial support of this research.
References and notes
1. For extensive lead references see: Larock, R. C. Compre-
hensive Organic Transformations, 2nd ed.; Wiley-VCH:
New York, 1999; pp 715; See also: Tilstam, U.; Wein-
mann, H. Org. Proc. Res. Dev. 2002, 6, 384.
2. Burch, H. A. J. Med. Chem. 1972, 15, 429; DeKimpe, N.;
DeCock, W.; Schamp, N. Synthesis 1987, 188; Gilchrist,
T. L.; Sanchez Romero, O. A.; Wasson, R. C. J. Chem.
Soc., Perkin Trans. 1 1989, 353.
3. Shi, X.-X.; Dai, L.-X. J. Org. Chem. 1993, 58,
4596.
4. Hakimelahi, G. H.; Just, G. Tetrahedron Lett. 1979, 3643;
Hayes, T. K.; Villani, R.; Weinreb, S. M. J. Am. Chem.
Soc. 1988, 110, 5533; Hakimelahi, G. H.; Tsay, S.-C.;
Ramezani, Z.; Hwu, J. R. Helv. Chim. Acta 1996, 79,
813.
5. Davies, D. T.; Kapur, N.; Parsons, A. F. Tetrahedron
2000, 56, 3941; , See also: Hintermann, L.; Togni, L. Helv.
Chim. Acta 2000, 83, 2425.
6. Ibrahim, H.; Kleinbeck, F.; Togni, A. Helv. Chim. Acta
2004, 87, 605.
7. West, R. W. J. Chem. Soc. 1922, 121, 2196; Straus, F.;
Kuhnel, R. Chem. Ber. 1933, 66, 1834; Baldovini, N.;
Bertrand, M.-P.; Carriere, A.; Nouguier, R.; Plancher,
J.-M. J. Org. Chem. 1996, 61, 3205.
12. For bromination of oxindoles, see: Sumpter, W. C.;
Miller, M.; Hendrick, L. N. J. Am. Chem. Soc. 1945, 67,
1656; Kraynack, E. A.; Dalgard, J. E.; Gaeta, F. C. A.
Tetrahedron Lett. 1998, 39, 7679; Rossiter, S. Tetrahedron
Lett. 2002, 43, 4671.
8. Boyd, R. E.; Rasmussen, C. R.; Press, J. B. Synth.
Commun. 1995, 25, 1045.
9. VanBrunt, M. P.; Ambenge, R. O.; Weinreb, S. M. J. Org.
Chem. 2003, 68, 3323.
10. General procedure for halogenation of 1,3-dicarbonyl
compounds: To a solution of the 1,3-dicarbonyl com-
pound (1.20 mmol) in acetone (5 mL) and glacial acetic
acid (2 mL) cooled to 0 °C was added dropwise sodium
hypochlorite solution (0.83 mL, 1.80 mmol, 1.21 g/mL,
13. We are grateful to Dr. Hemant Yennawar for this X-ray
analysis. CCDC 271465 contains the supplementary crys-
tallographic data, which can be obtained free of charge
from The Cambridge Crystallographic Data Centre via