794
L. Dubois et al.
LETTER
(10) (a) Zare, A.; Hasaninejad, A.; Beyzavi, M. H.; Parhami, A.;
Moosavi, Zare. A. R.; Khalafi-Nezhad, A.; Sharghi, H. Can.
J. Chem. 2008, 86, 317. (b) Zare, A.; Hasaninejad, A.;
Beyzavi, M. H.; MoosaviZare, A. R.; Safinejad, R.; Khalafi-
Nezhad, A.; Asadi, F.; Baramaki, L.; Jomhori-Angali, S.;
Ghaleh-Golobi, R. Synth. Commun. 2009, 39, 139.
(11) Borissow, C. N.; Black, S. J.; Paul, M.; Tovey, S. C.; Dedos,
S. G.; Taylor, C. W.; Potter, B. V. L. Org. Biomol. Chem.
2005, 3, 245.
(12) Esposito, A.; Perino, M. G.; Taddei, M. Eur. J. Org. Chem.
1999, 931.
(13) Procedure for the Synthesis of 9-(2-tert-Butoxycarbonyl-
ethyl)adenine (5b)
Thus, the resulting intermediate 8b seems to be more re-
active towards the alkylation than the starting material 3.
This result is quite different of what is usually observed in
solution concerning monoprotection of symmetric bisin-
dolylmaleimide. On the other hand, the bisalkylatedin-
dolylmaleimide 9b was obtained alone in 71% yield with
an excess of Michael acceptor 4b (Table 3, entry 3) and
easily converted into 9c.
We have shown that previously reported conjugate addi-
tion of adenine 1 to ethyl acrylate (4a) assisted by micro-
wave activation can be extended to Michael acceptors,
tert-butyl acrylate (4b), and acrylic acid (4c), as well as to
other Michael donors, indole (2) and bisindolylmaleimide
(3) in the presence of a catalytic amount of KOH, provid-
ing a regioselective access in good yields to the corre-
sponding N-ethyl and tert-butylpropanoate and propanoic
acid derivatives that can be further functionalized. In
these environmentally friendly conditions, aza-Michael
addition with acrylic acid had never been reported yet.
Furthermore, N-ethyl and tert-butyl propanoate are also
versatile protective groups of azaheterocycles since after
ester hydrolysis, N-propanoic acid can easily undergo
subsequent retro-Michael addition under basic conditions
and thermal or microwave activation.
Adenine 1 (2.027 g, 15 mmol), DABCO(1.681 g, 15 mmol),
TBAB (967 mg, 3 mmol) were ground until a homogeneous
mass was obtained, then 4b (3.27 mL, 22.5 mmol) was
added. The reaction mixture was stirred using a dark
magnetic bar for 30 min before irradiation at 200 W in a
microwave oven. The reaction mixture was suspended in
CHCl3 (450 mL) and washed with H2O (3 × 250 mL). The
organic layer was dried (MgSO4), filtered, and evaporated
under reduced pressure to give 2.81 g (71%) of 5b as a white
powder.
(14) Spectral and Analytical Data of Compound 5b
Mp 182–184 °C (lit.12 183–185 °C); Rf = 0.6 (CH2Cl2–
MeOH = 9:1). 1H NMR (500 MHz, CDCl3): δ = 8.14 (s, 1H,
H-2), 8.09 (s, 1H, H-8), 7.16 (s, 2H, NH2), 4.34 (t, J = 7.0
Hz, 2H, CH2N), 2.85 (t, J = 7.0 Hz, 2H, CH2CO), 1.31 (s,
9H, CH3). 13C NMR (500 MHz, DMSO): δ = 169.7 (CO),
155.9 (Cq-Ar), 152.3 (C-2), 149.4 (Cq-Ar), 140.9 (C-8),
118.7 (Cq-Ar), 80.4 (Cq-t-Bu), 39.0 (CH2N), 34.9 (CH2CO),
27.8 (CH3). IR: ν = 3292 (NH2), 1723 (CO) cm–1. MS (ESI+):
m/z (%) = 264.0 (100) [M+H]+. HRMS (ESI+) calcd for
[C12H17N5O2 +H]+: 264.1457; found: 264.1451.
Acknowledgment
The authors are thankful to the Neuropôle Région Ile-de-France
(NeRF) for PhD financial support (L.D.).
(15) Karskela, T.; Lönnberg, H. J. Org. Chem. 2009, 74, 9446.
(16) Jennings, L. D.; Foreman, K. W.; Rush, T. S. III; Tsao, D. H.
H.; Mosyak, L.; Kincaid, S. L.; Sukhdeo, M. N.; Sutherland,
A. G.; Ding, W.; Kenny, C. H.; Sabus, C. L.; Liu, H.;
Dushin, E. G.; Moghazeh, S. L.; Labthavikul, P.; Petersen,
P. J.; Tuckman, M.; Ruzin, A. V. Bioorg. Med. Chem. 2004,
12, 5115.
(17) (a) Robarge, M. J.; Bom, D. C.; Tumey, L. N.; Varga, N.;
Gleason, E.; Silver, D.; Song, J.; Murphy, S. M.; Ekema, G.;
Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski, G.;
Danzig, J.; Loftus, M.; Hunady, K.; Sherf, B. A.; Mays, R.
W.; Stricker-Krongrad, A.; Brunden, K. R.; Harrington, J. J.;
Bennani, Y. L. Bioorg. Med. Chem. Lett. 2005, 15, 1749.
(b) Yeom, C.-E.; Kim, M. J.; Kim, B. M. Tetrahedron 2007,
63, 904. (c) Ferlin, M. G.; Bortolozzi, R.; Brun, P.;
Castagliuolo, I.; Hamel, E.; Basso, G.; Viola, G.
ChemMedChem 2010, 5, 1373. (d) Hou, X.; Hemit, H.;
Yong, J.; Nie, L.; Aisa, H. A. Synth. Commun. 2010, 40, 973;
and references cited therein.
(18) Cooper, L. C.; Chicchi, G. G.; Dinnell, K.; Elliott, J. M.;
Hollingworth, G. J.; Kurtz, M. M.; Locker, K. L.; Morrison,
D.; Shaw, D. E.; Tsao, K.-L.; Watt, A. P.; Williams, A. R.;
Swain, C. J. Bioorg. Med. Chem. Lett. 2001, 11, 1233.
(19) (a) Mohammadpoor-Baltork, I.; Memarian, H. R.;
Khosropour, A. R.; Nikoofar, K. Heterocycles 2006, 68,
1837. (b) Kumar, V.; Kaur, S.; Kumar, S. Tetrahedron Lett.
2006, 47, 7001.
Supporting Information for this article is available online at
t
r
giSutpor
References and Notes
(1) (a) Estep, K. G.; Josef, K. A.; Bacon, E. R.; Carabateas, P.
M.; Rumneyl, V. S.; Pilling, G. M.; Krafte, D. S.; Volberg,
W. A.; Dillon, K.; Dugrenier, N.; Briggs, G. M.; Camiff, P.
C.; Gorczyca, W. P.; Stankus, G. P.; Ezrid, A. M. J. Med.
Chem. 1995, 38, 2582. (b) Guillarme, S.; Legoupy, S.;
Bourgougnon, N.; Aubertin, A.-M.; Huet, F. Tetrahedron
2003, 59, 9635.
(2) (a) Zhong, M.; Robins, M. J. J. Org. Chem. 2006, 71, 8901.
(b) Zhong, M.; Nowak, I.; Cannon, J. F.; Robins, M. J.
J. Org. Chem. 2006, 71, 4216.
(3) Legraverend, M. Tetrahedron 2008, 64, 8585.
(4) Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry,
3rd ed.; Chapman and Hall: London, 1995, 516.
(5) Delarue-Cochin, S.; McCort-Tranchepain, I. Org. Biomol.
Chem. 2009, 7, 706.
(6) (a) Caddick, S. Tetrahedron 1995, 51, 10403. (b) Caddick,
S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325.
(7) Qu, G.-R.; Zhang, Z.-G.; Geng, M.-W.; Ran, X.; Zhao, L.;
Guo, H.-M. Synlett 2007, 721.
(8) Zare, A.; Hasaninejad, A.; Safinejad, R.; Moosavi, Zare. A.
R.; Khalafi-Nezhad, A.; Beyzavi, M. H.; Miralai-Moredi,
M.; Dehghani, E.; Kazerooni-Mojarrad, P. ARKIVOC 2008,
(xvi), 61.
(9) Khalafi-Nezhad, A.; Zarea, A.; Rad, M. N. S.; Mokhtari, B.;
Parhami, A. Synthesis 2005, 419.
(20) Couthon-Gourvès, H.; Simon, G.; Haelters, J.-P.; Corbel, B.
Synthesis 2006, 81.
(21) De Rosa, M.; Soriente, A. Tetrahedron 2010, 66, 2981.
(22) Bogdal, D.; Pielichowski, J.; Jaskot, K. Heterocycles 1997,
45, 715.
Synlett 2012, 23, 791–795
© Georg Thieme Verlag Stuttgart · New York