View Article Online
this observed decrease of b as compared to the octupolar
ruthenium species.
To summarize, we have synthesized and investigated a new
class of nondipolar NLO complexes showing good transpar-
ency/efficiency trade-off. Work towards the incorporation of
such chromophores into macromolecular architectures are
under progress.
Notes and references
1
J. Zyss, Nonlinear Opt., 1991, 1, 3; J. Chem. Phys., 1993, 98, 6583; J.
Zyss and I. Ledoux, Chem. Rev., 1994, 94, 77.
2
I. Ledoux, J. Zyss, J. S. Siegel, J. Brienne and J. M. Lehn, Chem. Phys.
Lett., 1990, 172, 440; T. Verbiest, K. Clays, C. Semyr, J. Wolff, D.
Reihoudt and A. Persoons, J. Am. Chem. Soc., 1994, 116, 9320; J. L.
Bredas, F. Meyers, B. M. Pierce and J. Zyss, J. Am. Chem. Soc., 1992,
114, 4928; R. Wortmann, C. Glana, P. Kr a¨ mer, R. Matschiner, J. J.
Wolff, S. Kraft, B. Treptow, E. Barbu, D. L a¨ ngle and G. G o¨ ltz, Chem.
Eur. J., 1997, 3, 1765.
Fig. 1
I
tion [Cu ? p*(bpy)] is typically observed at ca. 480 nm with
relatively smaller absorption coefficients and can be discerned
in the spectra as a shoulder of the more intense ILCT band.
As EFISH experiment is precluded for nondipolar and/or
ionic molecules like 3, the molecular hyperpolarisability b was
measured by means of the harmonic light scattering technique
3
4
5
J. Zyss, T. Chauvan, C. Dhenaut and I. Ledoux, Chem. Phys., 1993, 177,
2
81.
S. Stadler, Ch. Br a¨ uchle, S. Brandl and R. Gompper, Chem. Mater.,
996, 8, 414.
(
HLS).17 The experiments were performed in chloroform at a
1
fundamental wavelength of 1.34 mm, generated by a Q-
S. Stadler, Ch. Br a¨ uchle, S. Brandl and R. Gompper, Chem. Mater.,
1996, 8, 676.
switched, mode-locked Nd:YAG laser providing subnano-
second pulse train at 10 Hz repetition rate. The T
d
(or D
2
)
6 M. Lequan, C. Branger, J. Simon, T. Thami, E. Chauchard and A.
Persoons, Adv. Mater., 1994, 6, 851.
symmetry reduces the nonlinear microscopic coefficient to only
one non-vanishing term, bxyz, which can be easily deduced from
the following relation: < b HLS > = 4/7 b2xyz. The experimen-
7
C. Lambert, E. Schm a¨ lzlin, K. Meerholz and C. Br a¨ uchle, Chem. Eur.
J., 1998, 4, 512.
2
2
1/2
> 1/2, deduced from
8 M. Blanchard-Desce, J.-B. Baudin, O. Ruel, L. Julien, S. Brasselet and
J. Zyss, Opt. Mater., 1997, 6, 276.
tally determined < b > , the static < b
0
2
<
b > using a degenerate three-level dispersion model valid in
the case of purely octupolar molecules, and the corresponding
xyz coefficients for 3a,b are given in Table 1.
9
J. Zyss, C. Dhenaut, T. Chauvan and I. Ledoux, Chem. Phys. Lett., 1993,
06, 409.
18
2
b
1
0 I. D. Morrison, R. G. Denning, W. M. Laidlaw and M. A. Stammers,
Rev. Sci. Instrum., 1996, 67, 1445.
a
b
Table 1 Linear and nonlinear optical data
1
1 C. Dhenaut, I. Ledoux, I. F. W. Samuel, J. Zyss, M. Bourgault and H. Le
Bozec, Nature, 1996, 374, 339; Owing to possible two-photon excited
luminescence,10 the reported hyperpolarisabilities were overestimated
3
1030
1030
HLS0/esu bxyz/esu
1030
1030
xyz0/esu
l/nm (e/dm
Complex mol cm21)
21
bHLS/esu
b
b
2
1/2
230
and new measurements gave < b > as ≈ 800–1000 3 10
esu: S.
Brasselet, C. Dhenaut, I. Ledoux and J. Zyss, unpublished results.
3
3
a
a
424(83300)
84(sh)
420(73800)
75(sh)
. b HLS measurements in CHCl
144
78
190
169
103
93
1
2 P. J. Burke, K. Henrick and D. R. McMillin, Inorg. Chem., 1982, 21,
4
1
881; D. A. Bardwell, J. C. Jeffery, C. A. Otter and M. D. Ward,
b
128
70
Polyhedron, 1996, 15, 191.
4
1
3 J.-P. Sauvage, Acc. Chem. Res., 1990, 23, 319; C. O. Dietrich-Bucheker
and J.-P. Sauvage, Chem. Rev., 1987, 87, 795; C. O. Dietrich-Bucheker,
J. F. Nierengarten, J.-P. Sauvage, N. Armaroli and L. De Cola, J. Am.
Chem. Soc., 1993, 115, 11 237; C. O. Dietrich-Bucheker, J.-P. Sauvage,
A. De Cian and J. Fischer, J. Chem. Soc., Chem. Commun., 1994,
In CH
2
Cl
2
3
at 1.34 mm. The error in the
measurements is estimated to be ±10%.
Results show that chromophores 3a and 3b exhibit micro-
scopic optical nonlinearities which are larger than those of
recently reported tetrahedral molecules such as the tetra-
kis(dibutylaminoazobenzenephosphonium)chromophore [lmax
2
231.
1
4 J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier and D.
Mores, Proc. Natl. Acad. Sci. USA, 1987, 84, 2565; J. M. Lehn and A.
Rigault, Angew. Chem., Int. Ed., 1998, 27, 1095; M. T. Youinou, R.
Ziessel and J.-M. Lehn, Inorg. Chem., 1991, 30, 2144; G. Baum, E. C.
Constable, D. Fenske, C. E. Housecroft and T. Kulke, Chem. Commun.,
1999, 195.
0
230
7
=
511 nm; bHLS = 56.7 3 10
esu]. Dibutylaminophenyl
is slightly more efficient than the methyl(octyl)aminophenyl
donor group, a trend that have already been observed for
1
5 W. Velten and M. Rehahn, Chem. Commun., 1996, 2639.
16 M. Bourgault, T. Renouard, B. Lognon e´ , C. Mountassir and H. Le
octahedral trisbipyridyl ruthenium(ii) complexes bearing the
same dialkylaminophenyl groups.11 Compared to these latter
Bozec, Can. J. Chem., 1997, 75, 318.
complexes, the copper(i) derivatives 3 have lower bHLS values.
At first glance, this may be due to the presence of four vs. six
1
7 R. W. Terhune, P. D. Maker and C. M. Savage, Phys. Rev. Lett., 1965,
1, 681.
8 M. Joffre, D. Yaron, R. J. Silbey and J. Zyss, J. Chem. Phys., 1992, 97,
607.
6
+
donor groups and to the less efficient acceptor strength of Cu
1
vs. Ru2+ metallic ion. A more pronounced blue-shift of the
absorption maximum is observed in the copper complexes, and
the higher energy of the ILCT excited state also contributes to
5
Communication 9/01972C
872
Chem. Commun., 1999, 871–872