anisotropy antiferromagnet will normally show a transition
from the antiferromagnetic to the spin±¯op state in the
isothermal magnetisation curve.
Whilst the fused nature of the BDTA and MBDTA ring
systems provides an opportunity for p-delocalisation of the
spin density away from the heterocyclic ring, theoretical
2
calculations have shown that the majority of the spin density
is still localised on the S and N atoms. Consequently the main
pathway for magnetic exchange can be considered to be via the
¼
¼
intermolecular S N and S S interactions already described.
This gives rise to a two-dimensional sheet structure in the bc
plane; propagation along the crystallographic a direction relies
¼
Ê
on N H interactions [at 3.7 A to the H atom attached to C(4)]
and the degree of spin delocalisation onto the C ring (Fig. 3).
6
It is, presumably, the weakness of this third interaction which
precludes the onset of long range magnetic order. We are
presently examining new derivatives in which more extensive p-
delocalisation onto the substituents is anticipated, thereby
paving the way towards long range magnetic order at high
temperature.
Fig. 5 Experimental temperature dependence of the susceptibility, in
reduced units, of MBDTA ($) compared to representative examples of
the S~1/2 square planar Heisenberg antiferromagnetic model;
[
C
(
Cu(C
5
H
5
NO)
CuBr
)][PF ] (r), [Cu(pz)
6
(BF
(#), (2-NH
][ClO
4
)
2
]
(©), CuF
2
?2H
2
O
(%), (2-NH
2
-5-Cl-
2
CuBr (), [Cu(pz) -
5
H
5
N)
2
4
2
-5-Me-C
]
5
H
5
N)
2
4
NO
3
6
2
4
2
(,). Data are scaled to the high
temperature series prediction (solid line).
Acknowledgements
The two-dimensional magnetic behaviour of MBDTA
compares very well with other representative examples of the
S~1/2 square planar Heisenberg model. In Fig. 5 the magnetic
susceptibility of MBDTA, corrected for diamagnetic and
We would like to thank the Royal Society for an equipment
grant (J.M.R.), the EPSRC for a studentship (G.D.M.) and the
CICYT (Grant. No. MAT97-0951) for ®nancial support.
uncorrelated paramagnetic contributions, is represented in
8
reduced units together with that of Cu(C
5
H
5
NO)
(2-NH
4 2
and Cu(pz) (ClO )
6 4 2
(BF ) ,
8
O, (2-NH
9,10
CuF
C
2
?2H
N) CuBr
2
2
-5-Cl-C
[Cu(pz) (NO
5
H
3
N)
)]PF
2
CuBr
4
,
2
-5-Me-
References
9
,10
10
10
H
5 3
2
4
,
2
3
6
2
1
G. W oÈ lmershauser, M. Schnauber and T. Wilhelm, J. Chem. Soc.,
Chem. Commun., 1984, 573.
as taken from the literature. It is now well theoretically
established that a 2D S~1/2 square lattice Heisenberg
2
E. G. Awere, N. Burford, C. Mailer, J. Passmore, M. J. Schriver,
P. S. White, A. J. Banister, H. Oberhammer and L. H. Sutcliffe,
J. Chem. Soc., Chem. Commun., 1987, 66; E. G. Awere, N. Burford,
R. C. Haddon, S. Parsons, J. Passmore, J. V. Waszczak and
P. S. White, Inorg. Chem., 1990, 29, 4821.
T. M. Barclay, A. W. Cordes, R. H. de Laat, J. D. Goddard,
R. C. Haddon, D. Y. Jeter, R. C. Mawhinney, R. T. Oakley,
T. T. M. Palstra, G. W. Patenaude, R. W. Reed and
N. P. C. Westwood, J. Am. Chem. Soc., 1997, 119, 2633.
J. M. Rawson and G. D. McManus, Coord. Chem. Rev., 1999, 189,
135.
T. M. Barclay, A. W. Cordes, N. George, R. C. Haddon,
R. T. Oakley, T. T. M. Palstra, G. W. Patenaude, R. W. Reed,
J. F. Richardson and H. Zhang, Chem. Commun., 1997, 873.
T. M. Barclay, A. W. Cordes, N. A. George, R. C. Haddon,
M. E. Itkis, M. S. Mashuta, R. T. Oakley, G. W. Patenaude,
R. W. Reed, J. F. Richardson and H. Zhang, J. Am. Chem. Soc.,
1998, 120, 352.
1
1
antiferromagnet will order at T~0 K.
However, small
deviations from this model can trigger magnetic ordering.
Thus, magnetic anisotropy would allow a crossover in the spin
dimensionality to the 2D Ising model which can undergo
magnetic ordering at a ®nite temperature. Magnetic interac-
tions between layers would cause a crossover in the lattice
dimensionality to the 3D Heisenberg model which would also
allow magnetic ordering at ®nite temperature. The conse-
quence of either kind of crossover, or of both, is that eventually
all 2D Heisenberg systems show magnetic ordering at
temperatures well below that of the susceptibility maximum
3
4
5
(
susceptibility at Tmax~1.9 K and it orders at T ~0.62 K
T
max). Thus, Cu(C
5 5 6 4 2
H NO) (BF ) shows the maximum of the
6
1
2
N
with a ratio T
(
Cl-C
N
/Tmax~0.33. Other examples are CuF
2
?2H
2
O
1
Tmax~26 K, T ~10.9 K and T /T ~0.42), (2-NH -5-
3
N
N
max
2
9
H
5 3
N)
2
CuBr
4
(Tmax~1.06 K,
and (2-NH -5-Me-C H N) CuBr
~0.44 K and T
T
N
~0.74 K and
T
N
/
7
8
S. C. Nyburg and C. H. Faerman, Acta Crystallogr., Sect. B, 1985,
41, 274.
R. Navarro, in Magnetic Properties of Layered Transition Metal
Compounds, ed. L. J. de Jongh, Kluwer Academic Publishers,
Tmax~0.70)
max~0.82 K, T
2
5
3
2
4
9
(
T
N
N
/Tmax~0.54). In the case
of MBDTA, despite the very large exchange interaction
between radicals, long range order does not seem to become
apparent down to 1.8 K, the lowest temperature measured
during these experiments. The magnetic ordering transition in
x(T) measurements is normally manifested as a kink in the x(T)
curve, but the contribution from uncorrelated paramagnetic
centres renders its observation dif®cult in this instance. In
addition, M(H) measurements provide no indication of the
presence of antiferromagnetic ordering at 1.8 K either. A low
1990, p. 105.
P. R. Hammar, D. C. Dender, D. H. Reich, A. S. Albrecht and
C. P. Landee, J. Appl. Phys., 1997, 81, 4615.
10 M. M. Turnbull, A. S. Albrecht, G. B. Jameson, C. P. Landee,
Mol. Cryst. Liq. Cryst., 1999, 335, 245.
9
11
2
N. D. Mermin and H. Wagner, Phys. Rev. Lett., 1966, 17, 1133.
R. Navarro, H. A. Algra, L. J. de Jongh, R. L. Carlin and
C. J. O'Connor, Physica B, 1977, 86-88, 693.
1
13 S. Tazawa, K. Nagata and M. Date, J. Phys. Soc. Jpn., 1973, 20,
181.
J. Mater. Chem., 2000, 10, 2001±2003
2003