FULL PAPER
R. H. Crabtree, J. Organomet. Chem. 2004, 689, 4083–4091; i)
R. H. Crabtree, J. Chem. Soc., Dalton Trans. 2001, 2437–2450;
j) R. H. Crabtree, Chem. Rev. 1995, 95, 987–1007; k) A. Sen,
Acc. Chem. Res. 1998, 31, 550–557; l) J. Sommer, R. Jost, M.
Hachoumy, Catal. Today 1997, 38, 309–319; m) J. A. Labinger,
J. E. Bercaw, Nature 2002, 417, 507–514; n) S. S. Stahl, S. J.
Lippard, Iron Metab. 1999, 303–321; o) Y. Wang, D. L. An,
Q. H. Zhang, Sci. China: Chem. 2010, 53, 337–350; p) M. Ay-
ala, E. Torres, Appl. Catal. A 2004, 272, 1–13; q) G. Caeiro,
R. H. Carvalho, X. Wang, M. A. N. D. A. Lemos, F. Lemos,
M. Guisnet, F. R. Ribeiro, J. Mol. Catal. A 2006, 255, 131–
158.
Catalysis: All experiments were conducted in a 160 mL Hastelloy-
C2000 autoclave. This reaction vessel was filled with the given
amount of catalyst and solvent (TFA or TFA/TFAA). Then the
autoclave was flushed three times with 10 bar of dioxygen to re-
move the remaining air. Next the autoclave was pressurized with
10 bar of dioxygen and 20 bar of methane. The reaction mixture
was heated to the given temperature and stirred with a gas injection
stirrer at 500 rpm for the given reaction time. After the reaction, the
stirring was stopped, and the reaction vessel was cooled to room
temperature. CAUTION: The dioxygen/methane mixtures are po-
tentially explosive and special care has to be taken![25]
[2]
[3]
a) N. F. Gol’dshleger, M. B. Tyabin, A. E. Shilov, A. A. Shtein-
man, Zh. Fiz. Khim. 1969, 43, 2174–2175; b) N. F. Gol’dshleger,
V. V. Es’kova, A. E. Shilov, A. A. Shteinman, Zh. Fiz. Khim.
1972, 46, 1353.
a) R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh,
H. Fujii, Science 1998, 280, 560–564; b) R. A. Periana, D. J.
Taube, E. R. Evitt, D. G. Loffler, P. R. Wentrcek, G. Voss, T.
Masuda, Science 1993, 259, 340–343; c) J. Kua, X. Xu, R. A.
Periana, W. A. Goddard III, Organometallics 2002, 21, 511–
525.
a) S. Ahrens, T. Strassner, Inorg. Chim. Acta 2006, 359, 4789–
4796; b) S. Ahrens, A. Zeller, M. Taige, T. Strassner, Organome-
tallics 2006, 25, 5409–5415; c) M. Muehlhofer, T. Strassner,
W. A. Herrmann, Angew. Chem. 2002, 114, 1817; Angew.
Chem. Int. Ed. 2002, 41, 1745–1747; d) T. Strassner, M.
Muehlhofer, A. Zeller, E. Herdtweck, W. A. Herrmann, J. Or-
ganomet. Chem. 2004, 689, 1418–1424.
a) D. Meyer, M. A. Taige, A. Zeller, K. Hohlfeld, S. Ahrens, T.
Strassner, Organometallics 2009, 28, 2142–2149; b) D. Meyer,
A. Zeller, T. Strassner, J. Organomet. Chem. 2012, 701, 56–61.
L. Amiet, Rhone-Poulenc Specialties Chimiques, France, U.S.
Pat. 4730082, 1988.
a) G. Yin, D.-G. Piao, T. Kitamura, Y. Fujiwara, Appl. Or-
ganomet. Chem. 2000, 14, 438–442; b) P. M. Reis, J. A. L. Silva,
A. F. Palavra, J. J. R. Frausto da Silva, T. Kitamura, Y. Fuji-
wara, A. J. L. Pombeiro, Angew. Chem. 2003, 115, 845; Angew.
Chem. Int. Ed. 2003, 42, 821–823; c) C. Jia, T. Kitamura, Y.
Fujiwara, Acc. Chem. Res. 2001, 34, 633–639; d) M. Zerella, S.
Mukhopadhyay, A. T. Bell, Org. Lett. 2003, 5, 3193–3196; e)
L. J. Lobree, A. T. Bell, Ind. Eng. Chem. Res. 2001, 40, 736–
742; f) N. Basickes, T. E. Hogan, A. Sen, J. Am. Chem. Soc.
1996, 118, 13111–13112; g) M. Asadullah, Y. Taniguchi, T. Kit-
amura, Y. Fujiwara, Appl. Catal. A 2000, 194–195, 443–452; h)
M. V. Kirillova, A. M. Kirillov, D. Mandelli, W. A. Carvalho,
A. J. L. Pombeiro, G. B. Shul’pin, J. Catal. 2010, 272, 9–17; i)
M. V. Kirillova, M. L. Kuznetsov, P. M. Reis, J. A. da Silva, J. J.
da Silva, A. J. Pombeiro, J. Am. Chem. Soc. 2007, 129, 10531–
10545; j) M. V. Kirillova, A. M. Kirillov, A. J. L. Pombeiro,
Chem. Eur. J. 2010, 16, 9485–9493; k) M. V. Kirillova, A. M.
Kirillov, M. L. Kuznetsov, J. A. L. Silva, J. J. R. F. da Silva,
A. J. L. Pombeiro, Chem. Commun. 2009, 2353–2355.
a) G. B. Shulpin, Mini-Rev. Org. Chem. 2009, 6, 95–104; b) M.
Lin, T. Hogan, A. Sen, J. Am. Chem. Soc. 1997, 119, 6048–
6053; c) E. G. Chepaikin, A. P. Bezruchenko, A. A. Leshcheva,
G. N. Boyko, I. V. Kuzmenkov, E. H. Grigoryan, A. E. Shilov,
J. Mol. Catal. A 2001, 169, 89–98; d) E. G. Chepaikin, G. N.
Boyko, A. P. Bezruchenko, A. A. Leshcheva, E. H. Grigoryan,
J. Mol. Catal. A 1998, 129, 15–18; e) M. Kurioka, K. Nakata,
T. Jintoku, Y. Taniguchi, K. Takaki, Y. Fujiwara, Chem. Lett.
1995, 244–247; f) M. Zerella, A. T. Bell, J. Mol. Catal. A 2006,
259, 296–301; g) M. Lin, A. Sen, Nature 1994, 368, 613–615.
a) E. D. Park, Y.-S. Hwang, C. W. Lee, J. S. Lee, Appl. Catal.
A 2003, 247, 269–281; b) N. I. Kuznetsova, L. I. Kuznetsova,
Kinet. Catal. 2009, 50, 1–10; c) K. Otsuka, Y. Wang, Appl.
Catal. A 2001, 222, 145–161.
Liquid-Phase Analysis: The autoclave was depressurized and the
reaction mixture analyzed by gas chromatography with an Agilent
6850 Series II Networked GC apparatus equipped with a flame
ionization detector (FID) and a Macherey–Nagel Optima-210
0.25 μm column (30 mϫ0.25 mm). The yield of the methyl ester
was quantified by the addition of p-xylene (25 μL) as standard to
the reaction mixture (1.00 mL) after the reaction and injection of
this mixture into the GC apparatus. All GC measurements were
repeated four times, given values are averaged over all measure-
ments. The yields based on methane were calculated according to
the ideal gas law.
[4]
Gas-Phase Analysis: Gas-phase analysis was performed with an
Agilent 6850 Series II Networked GC apparatus, equipped with a
thermal conductivity detector (TCD) and a J&W Scientific GS-
GasPro column (60 mϫ0.32 mm). Samples of gas were taken from
the autoclave with a custom-built 1.5 mL high-pressure gas mouse
during and after the reaction at pressures of up to 60 bar. The gas
sample was then expanded into an open-ended 1 mL sample loop
in the GC. After complete pressure equalization, the sample loop
was inserted into the stream of carrier gas with a computer-trig-
gered pneumatic valve. The detected gases were identified and
quantified by comparing the retention times on the column and
signal areas of the samples with previously measured gas mixtures
of known composition.
[5]
[6]
[7]
Energy-Dispersive X-ray Spectroscopy (EDX): The EDX measure-
ment was performed with a Zeiss DSM982 Gemini scanning elec-
tron microscope equipped with a Voyager 984A-1SUS Noran In-
struments energy-dispersive X-ray detector.
UV/Vis Spectrophotometry: The UV/Vis measurements were per-
formed with a Cary 3 Perkin–Elmer Lambda 25 UV/Vis spectro-
photometer at a resolution of 2 nm.
Acknowledgments
We are grateful for financial support from the Deutsche For-
schungsgemeinschaft (DFG) (STR 526/7-1 and STR 526/7-2) and
the Fonds der Chemischen Industrie (FCI). S. A. thanks the Kon-
rad-Adenauer-Stiftung (KAS) and D. M. the Studienstiftung des
Deutschen Volkes for their support. We are grateful for a generous
donation of TFA and TFAA by Solvay GmbH Hannover.
[8]
[1] a) A. E. Shilov, G. B. Shul’pin, Chem. Rev. 1997, 97, 2879–
2932; b) E. G. Chepaikin, Russ. Chem. Rev. 2011, 80, 363–396;
c) J. A. Labinger, J. Mol. Catal. A 2004, 220, 27–35; d) A. Sen
in Applied Homogeneous Catalysis with Organometallic Com-
pounds (Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH,
Weinheim, 2002, vol. 3, pp. 1226–1240; e) B. G. Hashiguchi,
S. M. Bischof, M. M. Konnick, R. A. Periana, Acc. Chem. Res.
2012, 45, 885–898; f) H. Schwarz, Angew. Chem. 2011, 123,
10276; Angew. Chem. Int. Ed. 2011, 50, 10096–10115; g) A. A.
Fokin, P. R. Schreiner, Chem. Rev. 2002, 102, 1551–1594; h)
[9]
[10]
a) E. D. Park, Y. S. Hwang, J. S. Lee, Catal. Commun. 2001, 2,
187–190; b) M. Zerella, S. Mukhopadhyay, A. T. Bell, Chem.
Commun. 2004, 1948–1949; c) Y. Fan, Z. An, X. Pan, X. Liu,
Eur. J. Inorg. Chem. 2013, 3659–3663
3662
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim