Dimer–Dimer Interaction of SelA
1735
[16] Cook PD, Thoden JB, Holden HM. The structure of GDP-4-
keto-6-deoxy-D-mannose-3-dehydratase: a unique coenzyme
B6-dependent enzyme. Protein Sci 2006;15:2093–106.
[17] Chen XM, Ploux O, Liu HW. Biosynthesis of 3,6-
dideoxyhexoses: in vivo and in vitro evidence for protein–
protein interaction between CDP-6-deoxy-L-threo-D-glycero-4-
hexulose 3-dehydrase (E1) and its reductase (E3). Biochemistry
1996;35:16412–20.
[18] Eads JC, Beeby M, Scapin G, Yu TW, Floss HG. Crystal
structure of 3-amino-5-hydroxybenzoic acid (AHBA) synthase.
Biochemistry 1999;38:9840–9.
[19] Ambrogelly A, Palioura S, Soll D. Natural expansion of the
genetic code. Nat Chem Biol 2007;3:29–35.
Abbreviations used:
AHBA, 5-amino-3-hydroxybenzoate; CBS, cystathionine
β-synthase; CysS, cysteine synthase; PLP, pyridoxal
5′-phosphate; PSTK, O-phosphoseryl-tRNASec
kinase; SeMet, selenomethionine.
References
[1] Böck A, Forchhammer K, Heider J, Leinfelder W, Sawers G,
Veprek B, et al. Selenocysteine: the 21st amino acid. Mol
Microbiol 1991;5:515–20.
[2] Ehrenreich A, Forchhammer K, Tormay P, Veprek B, Böck A.
Selenoprotein synthesis in E. coli. Purification and charac-
terisation of the enzyme catalysing selenium activation. Eur J
Biochem 1992;206:767–73.
[3] Carlson BA, Xu XM, Kryukov GV, Rao M, Berry MJ,
Gladyshev VN, et al. Identification and characterization of
phosphoseryl-tRNA[Ser]Sec kinase. Proc Natl Acad Sci U S A
2004;101:12848–53.
[4] Yuan J, Palioura S, Salazar JC, Su D, O'Donoghue P, Hohn
MJ, et al. RNA-dependent conversion of phosphoserine
forms selenocysteine in eukaryotes and archaea. Proc Natl
Acad Sci U S A 2006;103:18923–7.
[5] Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, et al.
Biosynthesis of selenocysteine on its tRNA in eukaryotes.
PLoS Biol 2007;5:e4.
[6] Forchhammer K, Böck A. Selenocysteine synthase from
Escherichia coli. Analysis of the reaction sequence. J Biol
Chem 1991;266:6324–8.
[7] Itoh Y, Bröcker MJ, Sekine S, Hammond G, Suetsugu S, Söll D,
et al. Decameric SelA•tRNASec ring structure reveals mechanism
of bacterial selenocysteine formation. Science 2013;340:75–8.
[8] Clausen T, Huber R, Laber B, Pohlenz HD, Messerschmidt
A. Crystal structure of the pyridoxal-5′-phosphate dependent
cystathionine beta-lyase from Escherichia coli at 1.83 Å. J
Mol Biol 1996;262:202–24.
[9] Palioura S, Sherrer RL, Steitz TA, Söll D, Simonovic M. The
human SepSecS-tRNASec complex reveals the mechanism
of selenocysteine formation. Science 2009;325:321–5.
[10] Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mecha-
nistic, structural, and evolutionary considerations. Annu Rev
Biochem 2004;73:383–415.
[11] Araiso Y, Sherrer RL, Ishitani R, Ho JM, Söll D, Nureki O.
Structure of a tRNA-dependent kinase essential for selenocys-
teine decoding. Proc Natl Acad Sci U S A 2009;106:16215–20.
[12] Fukunaga R, Yokoyama S. Structural insights into the second
step of RNA-dependent cysteine biosynthesis in archaea:
crystal structure of Sep-tRNA:Cys-tRNA synthase from
Archaeoglobus fulgidus. J Mol Biol 2007;370:128–41.
[13] Kaiser JT, Gromadski K, Rother M, Engelhardt H, Rodnina
MV, Wahl MC. Structural and functional investigation of a
putative archaeal selenocysteine synthase. Biochemistry
2005;44:13315–27.
[20] Sauerwald A, Zhu W, Major TA, Roy H, Palioura S, Jahn D,
et al. RNA-dependent cysteine biosynthesis in archaea.
Science 2005;307:1969–72.
[21] Itoh Y, Sekine S, Yokoyama S. Crystallization and preliminary
X-ray crystallographic analysis of Aquifex aeolicus SelA, a
bacterial selenocysteine synthase. Acta Crystallogr Sect F
Struct Biol Cryst Commun 2012;68:1128–33.
[22] Walter TS, Meier C, Assenberg R, Au KF, Ren J, Verma A,
et al. Lysine methylation as a routine rescue strategy for
protein crystallization. Structure 2006;14:1617–22.
[23] Otwinowski Z, Minor W. Processing of X-ray diffraction
data collected in oscillation mode. Methods Enzymol
1997;276:307–26.
[24] McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD,
Storoni LC, Read RJ. Phaser crystallographic software. J
Appl Crystallogr 2007;40:658–74.
[25] Emsley P, Cowtan K. Coot: model-building tools for
molecular graphics. Acta Crystallogr Sect D Biol Crystallogr
2004;60:2126–32.
[26] Adams PD, Pannu NS, Read RJ, Brunger AT. Cross-
validated maximum likelihood enhances crystallographic
simulated annealing refinement. Proc Natl Acad Sci U S A
1997;94:5018–23.
[27] Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW,
Echols N, et al. PHENIX: a comprehensive Python-based
system for macromolecular structure solution. Acta Crystal-
logr Sect D Biol Crystallogr 2010;66:213–21.
[28] Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T,
Inamoto E, Toyonaga H, et al. Complete set of ORF clones
of Escherichia coli ASKA library (a complete set of E. coli K-
12 ORF archive): unique resources for biological research.
DNA Res 2005;12:291–9.
[29] Datsenko KA, Wanner BL. One-step inactivation of chromo-
somal genes in Escherichia coli K-12 using PCR products.
Proc Natl Acad Sci U S A 2000;97:6640–5.
[30] Yuan J, Hohn MJ, Sherrer RL, Palioura S, Su D, Söll D. A
tRNA-dependent cysteine biosynthesis enzyme recognizes
the selenocysteine-specific tRNA in Escherichia coli. FEBS
Lett 2010;584:2857–61.
[31] Roberts E, Eargle J, Wright D, Luthey-Schulten Z. MultiSeq:
unifying sequence and structure data for evolutionary analysis.
BMC Bioinformatics 2006;7:382.
[14] Koutmos M, Kabil O, Smith JL, Banerjee R. Structural basis
for substrate activation and regulation by cystathionine beta-
synthase (CBS) domains in cystathionine β-synthase. Proc
Natl Acad Sci U S A 2010;107:20958–63.
[15] Burkhard P, Tai CH, Ristroph CM, Cook PF, Jansonius JN.
Ligand binding induces a large conformational change in O-
acetylserine sulfhydrylase from Salmonella typhimurium. J
Mol Biol 1999;291:941–53.
[32] Humphrey W, Dalke A, Schulten K. VMD: visual molecular
dynamics. J Mol Graphics 1996;14:27–8.
[33] O'Donoghue P, Luthey-Schulten Z. Evolutionary profiles
derived from the QR factorization of multiple structural
alignments gives an economy of information. J Mol Biol
2005;346:875–94.
[34] Huson DH, Bryant D. Application of phylogenetic networks in
evolutionary studies. Mol Biol Evol 2006;23:254–67.